Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous phonon scattering and elastic correlations in amorphous solids

Abstract

A major issue in materials science is why glasses present low-temperature thermal and vibrational properties that sharply differ from those of crystals. In particular, long-wavelength phonons are considerably more damped in glasses, yet it remains unclear how structural disorder at atomic scales affects such a macroscopic phenomenon. A plausible explanation is that phonons are scattered by local elastic heterogeneities that are essentially uncorrelated in space, a scenario known as Rayleigh scattering, which predicts that the damping of acoustic phonons scales with wavenumber k as kd+1 (in dimension d). Here we demonstrate that phonon damping scales instead as − kd+1 ln k, with this logarithmic enhancement originating from long-range spatial correlations of elastic disorder caused by similar stress correlations. Our work suggests that the presence of long-range spatial correlations of local stress and elasticity may well be the crucial feature that distinguishes amorphous solids from crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response to a transverse excitation.
Figure 2: Sound properties.
Figure 3: Departures from Rayleigh scaling.
Figure 4: Correlations of elastic stiffnesses.

Similar content being viewed by others

References

  1. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25, 1–9 (1972).

    Article  CAS  Google Scholar 

  2. Phillips, W. A. Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351–160 (1972).

    Article  CAS  Google Scholar 

  3. Buchenau, U. et al. Low-frequency modes in vitreous silica. Phys. Rev. B 34, 5665–5673 (1986).

    Article  CAS  Google Scholar 

  4. Malinovsky, V. K. & Sokolov, A. P. The nature of boson peak in Raman-scattering in glasses. Solid State Commun. 57, 757–761 (1986).

    Article  Google Scholar 

  5. Nakayama, T. Boson peak and terahertz frequency dynamics of vitreous silica. Rep. Prog. Phys. 65, 1195–1242 (2002).

    Article  CAS  Google Scholar 

  6. Galperin, Y. M., Karpov, V. G. & Kozub, V. I. Localized states in glasses. Adv. Phys. 38, 669–737 (1989).

    Article  CAS  Google Scholar 

  7. Buchenau, U., Galperin, Y. M., Gurevich, V. L. & Schober, H. R. Anharmonic potentials and vibrational localization in glasses. Phys. Rev. B 43, 5039–5045 (1991).

    Article  CAS  Google Scholar 

  8. Parshin, D. A., Schober, H. R. & Gurevich, V. L. Vibrational instability, two-level systems, and the boson peak in glasses. Phys. Rev. B 76, 064206 (2007).

    Article  Google Scholar 

  9. Monaco, G. & Giordano, V. M. Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses. Proc. Natl Acad. Sci. USA 106, 3659–3663 (2009).

    Article  CAS  Google Scholar 

  10. Baldi, G., Giordano, V. M., Monaco, G. & Ruta, B. Sound attenuation at terahertz frequencies and the boson peak of vitreous silica. Phys. Rev. Lett. 104, 195501 (2010).

    Article  CAS  Google Scholar 

  11. Baldi, G., Giordano, V. M. & Monaco, G. Elastic anomalies at terahertz frequencies and excess density of vibrational states in silica glass. Phys. Rev. B 83, 174203 (2011).

    Article  Google Scholar 

  12. Ruta, B. et al. Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak. J. Chem. Phys. 137, 214502 (2012).

    Article  CAS  Google Scholar 

  13. Baldi, G. et al. Emergence of crystal-like atomic dynamics in glasses at the nanometer scale. Phys. Rev. Lett. 110, 185503 (2013).

    Article  CAS  Google Scholar 

  14. Baldi, G. et al. Anharmonic damping of terahertz acoustic waves in a network glass and its effect on the density of vibrational states. Phys. Rev. Lett. 112, 125502 (2014).

    Article  CAS  Google Scholar 

  15. Horbach, J., Kob, W. & Binder, K. High frequency sound and the boson peak in amorphous silica. Eur. Phys. J. B 19, 531–543 (2001).

    Article  CAS  Google Scholar 

  16. Tanguy, A., Wittmer, J. P., Leonforte, F. & Barrat, J. L. Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys. Rev. B 66, 174205 (2002).

    Article  Google Scholar 

  17. Leonforte, F., Tanguy, A., Wittmer, J. P. & Barrat, J. L. Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).

    Article  CAS  Google Scholar 

  18. Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7, 870–877 (2008).

    Article  CAS  Google Scholar 

  19. Tsamados, M., Tanguy, A., Goldenberg, C. & Barrat, J. L. Local elasticity map and plasticity in a model Lennard-Jones glass. Phys. Rev. E 80, 026112 (2009).

    Article  Google Scholar 

  20. Monaco, G. & Mossa, S. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale. Proc. Natl Acad. Sci. USA 106, 16907–16912 (2009).

    Article  CAS  Google Scholar 

  21. Derlet, P. M., Maass, R. & Loeffler, J. F. The Boson peak of model glass systems and its relation to atomic structure. Eur. Phys. J. B 85, 148 (2012).

    Article  Google Scholar 

  22. Marruzzo, A., Schirmacher, W., Fratalocchi, A. & Ruocco, G. Heterogeneous shear elasticity of glasses: the origin of the boson peak. Sci. Rep. 3, 1407 (2013).

    Article  Google Scholar 

  23. Busselez, R., Pezeril, T. & Gusev, V. E. Structural heterogeneities at the origin of acoustic and transport anomalies in glycerol glass-former. J. Chem. Phys. 140, 234505 (2014).

    Article  Google Scholar 

  24. Taraskin, S. N., Loh, Y. L., Natarajan, G. & Elliott, S. R. Origin of the boson peak in systems with lattice disorder. Phys. Rev. Lett. 86, 1255–1258 (2001).

    Article  CAS  Google Scholar 

  25. Schirmacher, W. Thermal conductivity of glassy materials and the “boson peak”. Europhys. Lett. 73, 892–898 (2006).

    Article  CAS  Google Scholar 

  26. Schirmacher, W. et al. Vibrational excitations in systems with correlated disorder. Phys. Status Solidi C 5, 862–866 (2008).

    Article  CAS  Google Scholar 

  27. Zeller, R. C. & Pohl, R. O. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971).

    Article  Google Scholar 

  28. Vacher, R., Foret, M., Courtens, E., Pelous, J. & Suck, J. B. Do high-frequency acoustic vibrations propagate in structurally disordered solids? Phil. Mag. B 77, 523–532 (1998).

    Article  CAS  Google Scholar 

  29. Klemens, P. G. The thermal conductivity of dielectric solids at low temperatures - theoretical. Proc. R. Soc. Lond. A 208, 108–133 (1951).

    Article  CAS  Google Scholar 

  30. Velicky, B. Sound in granular matter: A case of wave propagation in random media. Lecture notes, G.P.S. Jussieu, Paris 6 and Paris 7 (1999); https://cel.archives-ouvertes.fr/cel-00092942

  31. Lemaître, A. Structural relaxation is a scale-free process. Phys. Rev. Lett. 113, 245702 (2014).

    Article  Google Scholar 

  32. Lemaître, A. Tensorial analysis of Eshelby stresses in 3D supercooled liquids. J. Chem. Phys. 143, 164515 (2015).

    Article  Google Scholar 

  33. Wu, B., Iwashita, T. & Egami, T. Anisotropic stress correlations in two-dimensional liquids. Phys. Rev. E 91, 032301 (2015).

    Article  Google Scholar 

  34. Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  CAS  Google Scholar 

  35. Dyre, J. C. Solidity of viscous liquids. II Anisotropic flow events. Phys. Rev. E 59, 7243–7245 (1999).

    Article  CAS  Google Scholar 

  36. Jensen, K. E., Weitz, D. A. & Spaepen, F. Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. Phys. Rev. E 90, 042305 (2014).

    Article  CAS  Google Scholar 

  37. Taraskin, S. N. & Elliott, S. R. Propagation of plane-wave vibrational excitations in disordered systems. Phys. Rev. B 61, 12017–12030 (2000).

    Article  CAS  Google Scholar 

  38. Dietsche, W. & Kinder, H. Spectroscopy of phonon-scattering in glass. Phys. Rev. Lett. 43, 1413–1417 (1979).

    Article  CAS  Google Scholar 

  39. John, S. & Stephen, M. J. Wave-propagation and localization in a long-range correlated random potential. Phys. Rev. B 28, 6358–6368 (1983).

    Article  Google Scholar 

  40. Dyre, J. C. Hidden scale invariance in condensed matter. J. Phys. Chem. B 118, 10007–10024 (2014).

    Article  CAS  Google Scholar 

  41. Mantisi, B., Tanguy, A., Kermouche, G. & Barthel, E. Atomistic response of a model silica glass under shear and pressure. Eur. Phys. J. B 85, 304 (2012).

    Article  Google Scholar 

  42. Brown, W. M., Wang, P., Plimpton, S. J. & Tharrington, A. N. Implementing molecular dynamics on hybrid high performance computers - short range forces. Comput. Phys. Commun. 182, 898–911 (2011).

    Article  CAS  Google Scholar 

  43. Lemaître, A. & Maloney, C. Sum rules for the quasi-static and visco-elastic response of disordered solids at zero temperature. J. Stat. Phys. 123, 415–453 (2006).

  44. Barron, T. & Klein, M. Second-order elastic constants of a solid under stress. Proc. Phys. Soc. 85, 523–532 (1965).

    Article  Google Scholar 

  45. Slaughter, W. The Linearized Theory of Elasticity 1st edn (Birkhäuser, 2001).

    Google Scholar 

  46. Goldhirsch, I. & Goldenberg, C. On the microscopic foundations of elasticity. Eur. Phys. J. E 9, 245–251 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Caroli for pointing us to Velicky’s course30, and for her comments on the role of disorder correlations in scattering. S.G. acknowledges the financial support from Specially Promoted Research from the Japan Society for the Promotion of Science (JSPS) for his stay at Institute of Industrial Science (IIS), University of Tokyo. A.L. acknowledges the support for his stay in IIS from the Foundation for the Promotion of Industrial Science (Shorei kai). H.T. acknowledges the support from Grants-in-Aid for Scientific Research (S) (21224011) and Specially Promoted Research (25000002) from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and H.T. conceived the project, S.G. and A.L. performed numerical simulations and data analysis. All the authors discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Hajime Tanaka or Anaël Lemaître.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 867 kb)

Supplementary Information

Supplementary movie 1 (MOV 35281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelin, S., Tanaka, H. & Lemaître, A. Anomalous phonon scattering and elastic correlations in amorphous solids. Nature Mater 15, 1177–1181 (2016). https://doi.org/10.1038/nmat4736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing