Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8

Abstract

The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures1,2,3, orbitally driven magnetism4, spin-ice behaviour5 exhibiting Dirac strings with magnetic monopoles6, valence-bond solids7,8 and spin liquids9,10. Here we report the synthesis and characterization of LiZn2Mo3O8, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions11,12,13. By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn2Mo3O8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state14,15. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LiZn2Mo3O8 structure.
Figure 2: Physical properties of LiZn2Mo3O8.

Similar content being viewed by others

References

  1. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  CAS  Google Scholar 

  2. Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nature Mater. 4, 323–328 (2005).

    Article  CAS  Google Scholar 

  3. Taguci, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  Google Scholar 

  4. Chen, G. & Balents, L. Spin–orbit coupling in d2 ordered double perovskites. Phys. Rev. B 84, 094420 (2011).

    Article  Google Scholar 

  5. Fennell, T. et al. Magnetic coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415–417 (2009).

    Article  CAS  Google Scholar 

  6. Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).

    Article  CAS  Google Scholar 

  7. Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    Article  CAS  Google Scholar 

  8. Matan, K. et al. Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice. Nature Phys. 6, 865–869 (2010).

    Article  CAS  Google Scholar 

  9. Pratt, F. L. et al. Magnetic and non-magnetic phases of a quantum spin liquid. Nature 471, 612–616 (2011).

    Article  CAS  Google Scholar 

  10. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  CAS  Google Scholar 

  11. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  12. Carlo, J. P. et al. Triplet and in-gap magnetic states in the ground state of the quantum frustrated fcc antiferromagnet Ba2YMoO6 . Phys. Rev. B 84, 100404 (2011).

    Article  Google Scholar 

  13. Winterlink, J. et al. Exotic magnetism in the alkali sesquioxides Rb4O6 and Cs4O6 . Phys. Rev. B 79, 214410 (2009).

    Article  Google Scholar 

  14. Anderson, P. W. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  15. Anderson, P. W. On the ground state properties of the anisotropic triangular antiferromagnet. Phil. Mag. 30, 423–440 (1973).

    Google Scholar 

  16. McCarley, R. E. Inorganic Chemistry Toward the 21st Century Vol. 211,273–290 (American Chemical Society, 1983).

    Book  Google Scholar 

  17. King, R. B. Encyclopedia of Inorganic Chemistry Vol. 2 (Wiley, 1994).

    Google Scholar 

  18. Nakatsuji, S. et al. Spin disorder on a triangular lattice. Science 309, 1697–1700 (2005).

    Article  CAS  Google Scholar 

  19. Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nature Commun. 2, 1–6 (2011).

    Article  Google Scholar 

  20. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S=1/2 Kagome antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

    Article  CAS  Google Scholar 

  21. Helton, J. S. et al. Spin dynamics of the spin-1/2 Kagome lattice antiferromagnet ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 98, 107204 (2007).

    Article  CAS  Google Scholar 

  22. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8 . Phys. Rev. Lett. 99, 137207 (2007).

    Article  Google Scholar 

  23. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article  CAS  Google Scholar 

  24. Benbow, E. M., Dalal, N. S. & Latturner, S. E. Spin glass behavior of isolated, geometrically frustrated tetrahedra of iron atoms in the intermetallic La21Fe8Sn7C12 . J. Am. Chem. Soc. 131, 3349–3354 (2009).

    Article  CAS  Google Scholar 

  25. De La Cruz, C. et al. Magnetic order close to superconductivity in the iron based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  26. Pene, K., Shannon, N. & Shiba, H. Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic Heisenberg model on a pyrochlore lattice. Phys. Rev. Lett. 93, 197203 (2004).

    Article  Google Scholar 

  27. Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated Kagome magnet, herbertsmithite, ZnCu3(OH)6Cl2 . J. Am. Chem. Soc. 132, 16185–16190 (2010).

    Article  CAS  Google Scholar 

  28. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  CAS  Google Scholar 

  29. Torardi, C. C. & McCarley, R. E. Synthesis, crystal structures, and properties of LiZn2Mo3O8, Zn3Mo3O8, and ScZnMo3O8, reduced derivatives containing the Mo3O13 cluster unit. Inorg. Chem. 24, 476–481 (1985).

    Article  CAS  Google Scholar 

  30. Bridges, C. A., Hansen, T., Wills, A. S., Luke, G. M. & Greedan, J. E. Frustrated magnetism and the effects of titanium substitution in the mixed valence oxide BaV10−xTix015 . Phys. Rev. B 74, 024426 (2006).

    Article  Google Scholar 

  31. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86–748 (1994).

  32. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001).

    Article  CAS  Google Scholar 

  33. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER46544. Use of the Spallation Neutron Source was supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. J.P.S. acknowledges the assistance of J. Hodges in collecting and analysing powder neutron data from POWGEN/SNS. T.M.M. acknowledges useful discussions with O. Tchernyshyov and C. Broholm.

Author information

Authors and Affiliations

Authors

Contributions

T.M.M. supervised the project. J.P.S. and D.G.S. prepared samples. J.P.S. measured neutron diffraction patterns. J.P.S. and T.M.M. measured properties, and J.P.S., J.R.N. and T.M.M. analysed data and prepared the manuscript.

Corresponding author

Correspondence to T. M. McQueen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheckelton, J., Neilson, J., Soltan, D. et al. Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8. Nature Mater 11, 493–496 (2012). https://doi.org/10.1038/nmat3329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing