Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rotation-reversal symmetries in crystals and handed structures

Abstract

Symmetry is a powerful framework to perceive and predict the physical world. The structure of materials is described by a combination of rotations, rotation-inversions and translational symmetries. By recognizing the reversal of static structural rotations between clockwise and counterclockwise directions as a distinct symmetry operation, here we show that there are many more structural symmetries than are currently recognized in right- or left-handed helices, spirals, and in antidistorted structures composed equally of rotations of both handedness. For example, we show that many antidistorted perovskites possess twice the number of symmetry elements as conventionally identified. These new ‘roto’ symmetries predict new forms for ‘roto’ properties that relate to static rotations, such as rotoelectricity, piezorotation, and rotomagnetism. They enable a symmetry-based search for new phenomena, such as multiferroicity involving a coupling of spins, electric polarization and static rotations. This work is relevant to structure–property relationships in all materials and structures with static rotations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotation-reversal symmetry and other antisymmetry operations.
Figure 2: Roto groups and property classification.
Figure 3: Symmetries in antidistorted cubic perovskite lattices.
Figure 4: Symmetries in helices and spirals.

Similar content being viewed by others

References

  1. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2005).

    Google Scholar 

  2. Burns, G. & Glazer, A. M. Space Groups for Solid State Scientists (Academic, 1990).

    Google Scholar 

  3. Koptsik, V. A. Outline of the development of the theory of symmetry and its application in physical crystallography during 50 years. Krystallografiya 12, 755–774 (1967).

    CAS  Google Scholar 

  4. Opechowski, W. Crystallographic and Metacrystallographic Groups (North-Holland, 1986).

    Google Scholar 

  5. Birss, R.R. Symmetry and Magnetism (North-Holland, 1964).

    Google Scholar 

  6. Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: A web-based tool for exploring structural distortions. J. Appl. Crystallogr. 39, 607–614 (2006).

    Article  CAS  Google Scholar 

  7. Orobengoa, D., Capillas, C., Aroyoa, M. I. & Perez-Mato, J. M. AMPLIMODES: Symmetry-mode analysis on the Bilbao crystallographic server. J. Appl. Crystallogr. 42, 820–833 (2009).

    Article  CAS  Google Scholar 

  8. Perez-Mato, J. M., Orobengoa, D. & Aroyo, M. I. Mode crystallography of distorted structures. Acta Crystallogr. A 66, 558–590 (2010).

    Article  CAS  Google Scholar 

  9. Denev, S. et al. Magnetic colour symmetry of lattice rotations in a diamagnetic material. Phys. Rev. Lett. 100, 257601 (2008).

    Article  CAS  Google Scholar 

  10. Zamorzaev, A. M. & Palistrant, A. F. Antisymmetry, its generalizations and geometrical applications. Z. Kristallogr. 151, 230–248 (1980).

    Google Scholar 

  11. Zamorzaev, A. M. The Theory of Simple and Multiple Antisymmetry (Kishinev. Shtiintsa, 1976).

    Google Scholar 

  12. Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 20, 434201 (2008).

    Article  Google Scholar 

  13. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  14. Perez-Mato, J. M., Orobengoa, D., Aroyo, M. I. & Elcoro, L. Modes vs. modulations: Symmetry-mode analysis of commensurate modulated structures compared with the superspace method. J. Phys. Conf. Ser. 226, 012011 (2010).

    Article  Google Scholar 

  15. Ederer, C. & Spaldin, N. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  16. Vainshtein, B. K. Diffraction of X-rays by Chain Molecules (Elsevier, 1966).

    Google Scholar 

  17. Hargittai, I. & Pickover, C. A. Spiral Symmetry (World Scientific Publishing, 2000).

    Google Scholar 

  18. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon, 1985).

    Google Scholar 

  19. Haun, M. J., Furman, E., Halemane, T. R. & Cross, L. E. Ferroelectrics 99, 55–62 (1989).

    Article  CAS  Google Scholar 

  20. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  21. Fennie, C. J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

    Article  Google Scholar 

  22. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Article  Google Scholar 

  23. Hatt, A. J. & Spaldin, N. A. Structural phases of strained LaAlO3 driven by octahedral tilt instabilities. Phys. Rev. B 82, 195402 (2010).

    Article  Google Scholar 

  24. Wadhawan, V. K. Introduction to Ferroic Materials 203–210 (Gordon and Breach Science Publishers, 2000).

    Google Scholar 

  25. Ji, N. & Shen, Y-R. A novel spectroscopic probe for molecular chirality. Chirality 18, 146–158 (2006).

    Article  CAS  Google Scholar 

  26. Van Aken, B. B., Rivera, J-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  CAS  Google Scholar 

  27. Subramanian, M. A., Ramirez, A. P. & Marshall, W. J. Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett. 82, 1558–1561 (1999).

    Article  CAS  Google Scholar 

  28. Srinivasarao, M. Chirality and polymers. Curr. Opin. Colloid Interface Sci. 4, 370–376 (1999).

    Article  Google Scholar 

  29. Blundell, T. L. & Srinivasan, N. Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proc. Natl Acad. Sci. USA 93, 14243–14248 (1996).

    Article  CAS  Google Scholar 

  30. Mackay, T. G. & Lakhtakia, A. Negatively refracting chiral metamaterials: Review. SPIE Rev. 1, 18003 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation through the MRSEC program DMR-0820404 and grant DMR-0908718. Discussions with C. J. Fennie, K. M. Rabe and A. M. Glazer are gratefully acknowledged. We thank S. Denev for help with artwork for Figure 4.

Author information

Authors and Affiliations

Authors

Contributions

V.G. conceived the idea of rotation-reversal symmetry, the roto groups, their influence on properties, and derived the symmetries listed using symmetry diagrams. D.B.L. critiqued these ideas, helped develop formal definitions for these concepts, and derived the symmetries listed using group theoretical methods. V.G. and D.B.L. co-wrote the article.

Corresponding author

Correspondence to Venkatraman Gopalan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalan, V., Litvin, D. Rotation-reversal symmetries in crystals and handed structures. Nature Mater 10, 376–381 (2011). https://doi.org/10.1038/nmat2987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing