Polymer nanosieve membranes for CO2-capture applications

Journal name:
Nature Materials
Volume:
10,
Pages:
372–375
Year published:
DOI:
doi:10.1038/nmat2989
Received
Accepted
Published online

Microporous organic polymers (MOPs) are of potential significance for gas storage1, 2, 3, gas separation4 and low-dielectric applications5. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO2 separation performance, even under polymer plasticization conditions such as CO2/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO2 sorption with superior affinity in gas mixtures, and selective CO2 transport by presorbed CO2 molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO2 capture processes.

At a glance

Figures

  1. Schematic illustration and computer modelling structures of PIM-1 and TZPIM.
    Figure 1: Schematic illustration and computer modelling structures of PIM-1 and TZPIM.

    a, Conversion of PIM-1 to TZPIM via the [2+3] cycloaddition reaction between aromatic nitrile groups and sodium azide, producing a tetrazole functional group. b, Three-dimensional view of PIM-1 in an amorphous periodic cell (the number of repeat units is 20). c, Three-dimensional view of TZPIM-3 in an amorphous periodic cell (the number of repeat units is 20; 100% conversion from nitrile groups to tetrazole groups; the blue dotted line indicates possible hydrogen-bonding modes).

  2. Relationship between CO2 permeability and CO2/N2 selectivity of TZPIMs and PIM-1.
    Figure 2: Relationship between CO2 permeability and CO2/N2 selectivity of TZPIMs and PIM-1.

    Measurements are for single gases and the upper bound is from ref. 18. TZPIM-1 (55% conversion of nitrile groups to tetrazole groups); TZPIM-2 (70.5% conversion). The squares correspond to literature data for various PIMs.

  3. Difference in single and mixed gas selectivity in TZPIM as a function of CO2 partial pressure.
    Figure 3: Difference in single and mixed gas selectivity in TZPIM as a function of CO2 partial pressure.

    a, Effect of CO2 partial pressure on mixed-gas CO2/N2 selectivity in TZPIM-2 at 25 °C. Mixed gas composition (in mol% CO2:mol% N2) was 50:50. b, Effect of CO2 partial pressure on mixed-gas CO2/CH4 selectivity in TZPIM-2 at 25 °C. Mixed gas compositions (in mol% CO2:mol% CH4) were 50:50 and 80:20. CO2 partial pressure in the mixture was differently obtained from both such compositions.

  4. Gas adsorption isotherms for PIM-1 and TZPIM-3.
    Figure 4: Gas adsorption isotherms for PIM-1 and TZPIM-3.

    aNitrogen adsorption/desorption isotherms at −195 °C for PIM-1 and TZPIM-3 (100% conversion of nitrile groups to tetrazole groups). p/po is the ratio of gas pressure (p) to saturation pressure (po), with po=746 torr. bCO2 adsorption isotherms at 0 °C for PIM-1 and TZPIM-3 at a low ratio of gas pressure to saturation pressure.

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705714 (2003).
  2. Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 21, 12911295 (2009).
  3. McKeown, N. B. et al. Towards polymer-based hydrogen storage materials: Engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew. Chem. Int. Ed. 45, 18041807 (2006).
  4. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254258 (2007).
  5. Long, T. M. & Swager, T. M. Molecular design of free volume as a route to low-k dielectric materials. J. Am. Chem. Soc. 125, 1411314119 (2005).
  6. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 817821 (2002).
  7. Schüth, F. & Schmidt, W. Microporous and mesoporous materials. Adv. Mater. 14, 629638 (2002).
  8. Kitagawa, S., Kitaura, R. & Noro, S-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 23342375 (2004).
  9. Nagai, K., Masuda, T., Nakagawa, T., Freeman, B. D. & Pinnau, I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 26, 721798 (2001).
  10. Park, H. B., Han, S. H., Jung, C. H., Lee, Y. M. & Hill, A. J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 359, 1124 (2010).
  11. Budd, P. M., McKeown, N. B. & Fritsch, D. Polymers of intrinsic microporosity (PIMs): High free volume polymers for membrane applications. Macromol. Sym. 245, 403405 (2006).
  12. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 11661170 (2005).
  13. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268272 (2007).
  14. Budd, P. M. et al. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263269 (2005).
  15. Du, N. Y., Robertson, G. P. & Guiver, M. D. Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules 42, 60236030 (2009).
  16. Du, N. Y., Robertson, G. P., Song, J. S. & Guiver, M. D. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 42, 60386043 (2009).
  17. Du, N. Y. et al. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 41, 96569662 (2008).
  18. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390400 (2008).
  19. Lin, H. & Freeman, B. D. Materials selection guideline for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 739, 5774 (2005).
  20. Lin, H. & Freeman, B. D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J. Membr. Sci. 239, 105117 (2004).
  21. Vogiatzis, K., Mavrandonakis, A., Klopper, W. & Froudakis, G. E. Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10, 374383 (2009).
  22. Gothelf, K. V. & Jørgensen, K. A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev. 98, 863910 (1998).
  23. Huisgen, R., Szeimies, G. & Möbius, L. 1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds. Chem. Ber. 100, 24942507 (1967).
  24. Binder, W. H. & Sachsenhofer, R. Click chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 1554 (2007).
  25. Guiver, M. D., Robertson, G. P., Yoshikawa, M. & Tam, C. M. Functionalized polysulfones: Methods for chemical modification and membrane applications. ACS Symp. Ser. 744, 137161 (2000) Chapter 10.
  26. Guiver, M. D. & Robertson, G. P. US Patent 5,475,065 (1995).
  27. Tsarevsky, N. V., Bernaerts, K. V., Dufour, B., Du Prez, F. E. & Matyjaszewski, K. Well-defined (co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (co)polymerization of acrylonitrile and click chemistry-type postpolymerization modification. Macromolecules 37, 93089313 (2004).
  28. Pinnau, I., Casillas, C. G., Morisato, A. & Freeman, B. D. Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Polym. Phys. 34, 26132621 (1996).
  29. Thomas, S., Pinnau, I., Du, N. & Guiver, M. D. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microprous spirobisindane polymer. J. Membr. Sci. 338, 14 (2009).
  30. Merkel, T., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 359, 126139 (2010).
  31. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. Advances in CO2 capture technology—the US Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2, 920 (2008).

Download references

Author information

  1. These authors contributed equally to this work

    • Naiying Du &
    • Ho Bum Park

Affiliations

  1. Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

    • Naiying Du,
    • Gilles P. Robertson,
    • Mauro M. Dal-Cin,
    • Ludmila Scoles &
    • Michael D. Guiver
  2. WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea

    • Ho Bum Park &
    • Michael D. Guiver
  3. Vaperma, 2111, 4e rue, St-Romuald, Québec, G6W 5M6, Canada

    • Tymen Visser

Contributions

N.D. experimental design, synthesis and gas permeation experiments, data analysis, manuscript writing; H.B.P. computer modeling, gas permeation and gas adsorption experiments, data analysis, manuscript writing; G.P.R. NMR and TGA-MS experiments, data analysis; M.M.D-C. gas permeation experiments, data analysis; T.V. industrial application input; L.S. assisted in the synthetic experiments; M.D.G. project idea, direction and supervision, experimental design, data analysis, manuscript writing.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (796 KB)

    Supplementary Information

Additional data