Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease

A Retraction to this article was published on 05 December 2013

A Retraction to this article was published on 05 December 2013

This article has been updated

Abstract

Interleukin-7 receptor (IL-7R) is genetically associated with susceptibility to multiple sclerosis. Here we describe that IL-7 is essential for survival and expansion of pathogenic T helper type 17 (TH17) cells in experimental autoimmune encephalomyelitis (EAE). IL-7 directly expanded effector TH17 cells in EAE and human TH17 cells from subjects with multiple sclerosis, whereas it was not required for TH17 differentiation. IL-7R antagonism rendered differentiated TH17 cells susceptible to apoptosis through the inhibition of Janus kinase–signal transducer and activator of transcription-5 (JAK-STAT5) pathway and altered expression of the prosurvival protein Bcl-2 and the proapoptotic protein Bax, leading to decreased severity of EAE. In contrast, TH1 and regulatory T (Treg) cells were less susceptible to or not affected by IL-7R antagonism in vivo. The selectivity was attributable to minimal expression of IL-7Rα in Treg cells and correlated with a high level of Socs1 (encoding suppressor of cytokine signaling-1) expression in TH1 cells. The study reveals a unique, previously undescribed role of IL-7–IL-7R in TH17 cell survival and expansion and has implications in the treatment of autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amelioration of EAE by IL-7R antagonism through selective reduction of TH17 cells.
Figure 2: The role of IL-7 in TH17 differentiation.
Figure 3: Requirement for IL-7 in TH17 cell expansion through JAK-STAT5.
Figure 4: Mechanism underlying the survival of differentiated TH17 cells mediated by IL-7.
Figure 5: Selectivity in susceptibility of TH17, TH1 and Treg cells to IL-7R antagonism through differential expression of IL-7Rα and Socs1.
Figure 6: Effects of IL-7 and IL-7Rα antagonism on survival and expansion of TH17 cells derived from subjects with multiple sclerosis.

Similar content being viewed by others

Change history

  • 05 December 2013

    The above manuscript was authored by scientists from the GlaxoSmithKline (GSK) Research and Development Center in Shanghai, China, and a researcher from Baylor Medical College who later became a GSK employee. Following anonymous reports of inaccuracies in this study, GSK conducted an investigation into these allegations.

References

  1. McFarland, H.F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nat. Immunol. 8, 913–919 (2007).

    Article  CAS  Google Scholar 

  2. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  Google Scholar 

  3. Issazadeh, S. et al. Interferon γ, interleukin 4 and transforming growth factor β in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells. J. Neurosci. Res. 40, 579–590 (1995).

    Article  CAS  Google Scholar 

  4. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  Google Scholar 

  5. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  6. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  7. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  8. Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).

    Article  CAS  Google Scholar 

  9. Tzartos, J.S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  Google Scholar 

  10. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  Google Scholar 

  11. Miossec, P., Korn, T. & Kuchroo, V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    Article  CAS  Google Scholar 

  12. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  13. Weiner, H.L. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol. 255 Suppl 1, 3–11 (2008).

    Article  CAS  Google Scholar 

  14. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  15. Serada, S. et al. IL-6 blockade inhibits the induction of myelin antigen–specific TH17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 105, 9041–9046 (2008).

    Article  CAS  Google Scholar 

  16. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  Google Scholar 

  17. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  18. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying TH17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  Google Scholar 

  19. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  20. Stritesky, G.L., Yeh, N. & Kaplan, M.H. IL-23 promotes maintenance but not commitment to the TH17 lineage. J. Immunol. 181, 5948–5955 (2008).

    Article  CAS  Google Scholar 

  21. McGeachy, M.J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  22. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  23. Gregory, S.G. et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat. Genet. 39, 1083–1091 (2007).

    Article  CAS  Google Scholar 

  24. Hafler, D.A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article  CAS  Google Scholar 

  25. Lundmark, F. et al. Variation in interleukin 7 receptor α chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 39, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  26. Palmer, M.J. et al. Interleukin-7 receptor signaling network: an integrated systems perspective. Cell. Mol. Immunol. 5, 79–89 (2008).

    Article  CAS  Google Scholar 

  27. Jiang, Q. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 16, 513–533 (2005).

    Article  CAS  Google Scholar 

  28. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor–deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  29. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  Google Scholar 

  30. Fry, T.J. & Mackall, C.L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    Article  CAS  Google Scholar 

  31. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4, 680–686 (2003).

    Article  CAS  Google Scholar 

  32. Bielekova, B. et al. Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. J. Neuroimmunol. 100, 115–123 (1999).

    Article  CAS  Google Scholar 

  33. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  34. Akirav, E.M., Bergman, C.M., Hill, M. & Ruddle, N.H. Depletion of CD4+CD25+ T cells exacerbates experimental autoimmune encephalomyelitis induced by mouse, but not rat, antigens. J. Neurosci. Res. 87, 3511–3519 (2009).

    Article  CAS  Google Scholar 

  35. McGeachy, M.J., Stephens, L.A. & Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    Article  CAS  Google Scholar 

  36. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    Article  CAS  Google Scholar 

  37. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  Google Scholar 

  38. Elder, J.T. IL-15 and psoriasis: another genetic link to TH17? J. Invest. Dermatol. 127, 2495–2497 (2007).

    Article  CAS  Google Scholar 

  39. Lu, N., Wang, Y.H., Arima, K., Hanabuchi, S. & Liu, Y.J. TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis. J. Exp. Med. 206, 2111–2119 (2009).

    Article  CAS  Google Scholar 

  40. Isaksen, D.E. et al. Uncoupling of proliferation and Stat5 activation in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 168, 3288–3294 (2002).

    Article  CAS  Google Scholar 

  41. Bettelli, E. Building different mouse models for human MS. Ann. NY Acad. Sci. 1103, 11–18 (2007).

    Article  CAS  Google Scholar 

  42. Chen, Y. et al. Anti–IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    Article  CAS  Google Scholar 

  43. O'Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 Suppl, S121–S131 (2002).

    Article  CAS  Google Scholar 

  44. Liu, X., Lee, Y.S., Yu, C.R. & Egwuagu, C.E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol. 180, 6070–6076 (2008).

    Article  CAS  Google Scholar 

  45. Egwuagu, C.E. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine 47, 149–156 (2009).

    Article  CAS  Google Scholar 

  46. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  Google Scholar 

  47. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of TH17 T cells. J. Exp. Med. 206, 43–49 (2009).

    Article  CAS  Google Scholar 

  48. Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med. 13, 711–718 (2007).

    Article  CAS  Google Scholar 

  49. Cho, M.L. et al. STAT3 and NF-κB signal pathway is required for IL-23–mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J. Immunol. 176, 5652–5661 (2006).

    Article  CAS  Google Scholar 

  50. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  Google Scholar 

  51. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  Google Scholar 

  52. Kumar, M. et al. CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J. Neuroimmunol. 180, 178–184 (2006).

    Article  CAS  Google Scholar 

  53. Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  54. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  Google Scholar 

  55. Seki, Y. et al. IL-7/STAT5 cytokine signaling pathway is essential but insufficient for maintenance of naive CD4 T cell survival in peripheral lymphoid organs. J. Immunol. 178, 262–270 (2007).

    Article  CAS  Google Scholar 

  56. Wang, Z. et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25 T cells to CD4+ Tregs. J. Clin. Invest. 116, 2434–2441 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Dong for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.L., S.L. and J.Z.Z. designed and discussed the study; X.L., C.W. and Z.T. performed the majority of the T cell experiments; J.W. performed viral gene expression experiments; Y.Z. performed EAE mouse experiments; B.W., X.Q. and L.L. performed the adoptive transfer experiments; R.L. and H.P. performed immunoblotting experiments; M.S. and A.L. performed histopathology analyses; J.H. performed human in vitro experiments; X.L., S.L., T.B.G., L.F., H.L. and J.Z.Z. contributed to the writing of the paper; J.Z.Z. supervised the project.

Corresponding author

Correspondence to Jingwu Z Zhang.

Ethics declarations

Competing interests

GlaxoSmithKline Research and Development Center is a division of GlaxoSmithKline. All authors except J.H. were employed by GlaxoSmithKline at the time of these studies.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Leung, S., Wang, C. et al. Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med 16, 191–197 (2010). https://doi.org/10.1038/nm.2077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing