Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction

Abstract

Bitter taste receptors (TAS2Rs) on the tongue probably evolved to evoke signals for avoiding ingestion of plant toxins. We found expression of TAS2Rs on human airway smooth muscle (ASM) and considered these to be avoidance receptors for inhalants that, when activated, lead to ASM contraction and bronchospasm. TAS2R agonists such as saccharin, chloroquine and denatonium evoked increased intracellular calcium ([Ca2+]i) in ASM in a Gβγ–, phospholipase Cβ (PLCβ)- and inositol trisphosphate (IP3) receptor–dependent manner, which would be expected to evoke contraction. Paradoxically, bitter tastants caused relaxation of isolated ASM and dilation of airways that was threefold greater than that elicited by β-adrenergic receptor agonists. The relaxation induced by TAS2Rs is associated with a localized [Ca2+]i response at the cell membrane, which opens large-conductance Ca2+-activated K+ (BKCa) channels, leading to ASM membrane hyperpolarization. Inhaled bitter tastants decreased airway obstruction in a mouse model of asthma. Given the need for efficacious bronchodilators for treating obstructive lung diseases, this pathway can be exploited for therapy with the thousands of known synthetic and naturally occurring bitter tastants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bitter tastants of diverse structures evoke increases in [Ca2+]i in human airway smooth muscle cells.
Figure 2: Bitter tastants induce relaxation of intact mouse tracheas in a non–cAMP-dependent manner.
Figure 3: Isolated airway smooth muscle responses to bitter tastants as assessed by single cell mechanics and membrane potentials.
Figure 4: Saccharin preferentially triggers localized [Ca2+]i responses in ASM cells.
Figure 5: Bitter taste receptor agonists attenuate bronchoconstriction in a mouse model of asthma.

Similar content being viewed by others

References

  1. Vignola, A.M., Bonsignore, G., Chanez, P. & Bousquet, J. Fatal Asthma 139–155 (Marcel Dekker, New York, 1998).

  2. Billington, C.K. & Penn, R.B. Signaling and regulation of G protein–coupled receptors in airway smooth muscle. Respir. Res. 4, 2–24 (2003).

    Article  Google Scholar 

  3. Green, S.A. & Liggett, S.B. The Genetics of Asthma 67–90 (Marcel Dekker, New York, 1996).

  4. Drazen, J.M., Silverman, E.K. & Lee, T.H. Heterogeneity of therapeutic responses in asthma. Br. Med. Bull. 56, 1054–1070 (2000).

    Article  CAS  Google Scholar 

  5. Malmstrom, K. et al. Oral montelukast, inhaled beclomethasone and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann. Intern. Med. 130, 487–495 (1999).

    Article  CAS  Google Scholar 

  6. Einstein, R. et al. Alternative splicing of the G protein–coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors. Proc. Natl. Acad. Sci. USA 105, 5230–5235 (2008).

    Article  CAS  Google Scholar 

  7. Misior, A.M. et al. Glucocorticoid- and protein kinase A–dependent transcriptome regulation in airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 41, 24–39 (2009).

    Article  CAS  Google Scholar 

  8. Bossé, Y., Maghni, K. & Hudson, T.J. 1α,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility and remodeling processes. Physiol. Genomics 29, 161–168 (2007).

    Article  Google Scholar 

  9. Meyerhof, W. Elucidation of mammalian bitter taste. Rev. Physiol. Biochem. Pharmacol. 154, 37–72 (2005).

    CAS  PubMed  Google Scholar 

  10. Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010).

    Article  CAS  Google Scholar 

  11. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    Article  CAS  Google Scholar 

  12. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  Google Scholar 

  13. Chandrashekar, J., Hoon, M.A., Ryba, N.J. & Zuker, C.S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

    Article  CAS  Google Scholar 

  14. Lombardo, L.J. & Balmes, J.R. Occupational asthma: a review. Environ. Health Perspect. 108 Suppl 4, 697–704 (2000).

    Article  Google Scholar 

  15. An, S.S., Fabry, B., Trepat, X., Wang, N. & Fredberg, J.J. Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? Am. J. Respir. Cell Mol. Biol. 35, 55–64 (2006).

    Article  CAS  Google Scholar 

  16. Martin, G. et al. Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. Exp. Physiol. 93, 908–918 (2008).

    Article  CAS  Google Scholar 

  17. Morin, C., Sirois, M., Echave, V., Gomes, M.M. & Rousseau, E. Functional effects of 20-HETE on human bronchi: hyperpolarization and relaxation due to BKCa channel activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1037–L1044 (2007).

    Article  CAS  Google Scholar 

  18. Kotlikoff, M.I. & Kamm, K.E. Molecular mechanisms of β-adrenergic relaxation of airway smooth muscle. Annu. Rev. Physiol. 58, 115–141 (1996).

    Article  CAS  Google Scholar 

  19. Baxter, D.F. et al. A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. J. Biomol. Screen. 7, 79–85 (2002).

    Article  CAS  Google Scholar 

  20. Fakler, B. & Adelman, J.P. Control of KCa channels by calcium nano/microdomains. Neuron 59, 873–881 (2008).

    Article  CAS  Google Scholar 

  21. Shah, A.S., Ben Shahar, Y., Moninger, T.O., Kline, J.N. & Welsh, M.J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  22. Finger, T.E. et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. USA 100, 8981–8986 (2003).

    Article  CAS  Google Scholar 

  23. Brockhoff, A., Behrens, M., Massarotti, A., Appendino, G. & Meyerhof, W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine and denatonium. J. Agric. Food Chem. 55, 6236–6243 (2007).

    Article  CAS  Google Scholar 

  24. Sbarbati, A. et al. Acyl homoserine lactones induce early response in the airway. Anat. Rec. (Hoboken) 292, 439–448 (2009).

    Article  Google Scholar 

  25. Panebra, A., Schwarb, M.R., Glinka, C.B. & Liggett, S.B. Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L453–L462 (2007).

    Article  CAS  Google Scholar 

  26. Liggett, S.B. et al. Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant β2-adrenergic receptors lacking phosphorylation sites. Mol. Pharmacol. 36, 641–646 (1989).

    CAS  PubMed  Google Scholar 

  27. McGraw, D.W. et al. Airway smooth muscle prostaglandin-EP1 receptors directly modulate β2-adrenergic receptors within a unique heterodimeric complex. J. Clin. Invest. 116, 1400–1409 (2006).

    Article  CAS  Google Scholar 

  28. Yang, X.R. et al. Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L338–L348 (2005).

    Article  CAS  Google Scholar 

  29. Zhang, W.M. et al. ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L680–L690 (2003).

    Article  CAS  Google Scholar 

  30. Cheng, H., Lederer, W.J. & Cannell, M.B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993).

    Article  CAS  Google Scholar 

  31. Small, K.M. et al. Polymorphisms of the cardiac presynaptic α2C adrenergic receptors: diverse intragenic variability with haplotype-specific functional effects. Proc. Natl. Acad. Sci. USA 101, 13020–13025 (2004).

    Article  CAS  Google Scholar 

  32. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ΔΔC t) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  33. McGraw, D.W. et al. Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation. J. Clin. Invest. 117, 1391–1398 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Heart, Lung, and Blood Institute grants HL104119 (to W.C.H.W.), HL045967 and HL071609 (to S.B.L.), HL071835 and HL075134 (to J.S.K.S.) and HL087560 (to D.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

D.A.D., single-cell mechanics and imaging, data analysis and manuscript preparation; W.C.H.W., expression studies, gene knockdown, airway physiology, data analysis and manuscript preparation; E.L.M., calcium signaling and data analysis; K.S.R., intact airway studies, expression studies, data analysis and manuscript preparation; R.M.S., airway physiology; S.S.A., single cell mechanics, data analysis, manuscript preparation; J.S.K.S., confocal calcium imaging, data analysis, manuscript preparation; S.B.L. directed all studies, data analysis and interpretation and is the primary author of the manuscript.

Corresponding author

Correspondence to Stephen B Liggett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, D., Wang, W., McIlmoyle, E. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16, 1299–1304 (2010). https://doi.org/10.1038/nm.2237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing