Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils

Abstract

The infiltration, accumulation and degranulation of eosinophils in the lung represents a hallmark of active asthma. In vivo or in vitro eosinophil activation triggers the secretion of the antiapoptotic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). We now identify Pin1, a cis-trans isomerase, as an essential component of the ribonucleoprotein complex responsible for GM-CSF mRNA stabilization, cytokine secretion and the survival of activated eosinophils. Pin1 regulated the association of the AU-rich element–binding proteins AUF1 and hnRNP C with GM-CSF mRNA, accelerating or slowing decay, respectively. These data indicate Pin1 is a key mediator of GM-CSF production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 is required for eosinophil survival.
Figure 2: Pin1 inhibition accelerates the decay of GM-CSF mRNA.
Figure 3: Pin1 associates with AUF1.
Figure 4: GM-CSF mRNA 'partitions' between AUF1 and hnRNP C.
Figure 5: Hyaluronic acid induces Pin1 dephosphorylation and isomerase activity.
Figure 6: The p37 isomer of AUF1 interacts with the exosome.
Figure 7: In vivo activation increases Pin1 activity and eosinophil survival and modulates GM-CSF mRNA–protein interactions.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Kay, A.B., Phipps, S. & Robinson, D.S. A role for eosinophils in airway remodelling in asthma. Trends Immunol. 25, 477–482 (2004).

    Article  CAS  Google Scholar 

  2. Schneider, T., van Velzen, D., Moqbel, R. & Issekutz, A.C. Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am. J. Respir. Cell Mol. Biol. 17, 702–712 (1997).

    Article  CAS  Google Scholar 

  3. Flood-Page, P.T., Menzies-Gow, A.N., Kay, A.B. & Robinson, D.S. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med. 167, 199–204 (2003).

    Article  Google Scholar 

  4. Lee, J.J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004).

    Article  CAS  Google Scholar 

  5. Humbles, A.A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004).

    Article  CAS  Google Scholar 

  6. Park, C.S. et al. Granulocyte macrophage colony-stimulating factor is the main cytokine enhancing survival of eosinophils in asthmatic airways. Eur. Respir. J. 12, 872–878 (1998).

    Article  CAS  Google Scholar 

  7. Caldenhoven, E. et al. Differential activation of functionally distinct STAT5 proteins by IL-5 and CSF2 during eosinophil and neutrophil differentiation from human CD34+ hematopoietic stem cells. Stem Cells 16, 397–403 (1998).

    Article  CAS  Google Scholar 

  8. Esnault, S. & Malter, J.S. GM-CSF regulation in eosinophils. Arch. Immunol. Ther. Exp. (Warsz.) 50, 121–130 (2002).

    CAS  Google Scholar 

  9. Esnault, S. & Malter, J.S. Granulocyte macrophage-colony-stimulating factor mRNA is stabilized in airway eosinophils and peripheral blood eosinophils activated by TNF-α plus fibronectin. J. Immunol. 166, 4658–4663 (2001).

    Article  CAS  Google Scholar 

  10. Sahu, S. & Lynn, W.S. Hyaluronic acid in the pulmonary secretions of patients with asthma. Biochem. J. 173, 565–568 (1978).

    Article  CAS  Google Scholar 

  11. Meerschaert, J., Kelly, E.A., Mosher, D.F., Busse, W.W. & Jarjour, N.N. Segmental antigen challenge increases fibronectin in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med. 159, 619–625 (1999).

    Article  CAS  Google Scholar 

  12. Virchow, J.C., Jr. et al. T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am. J. Respir. Crit. Care Med. 151, 960–968 (1995).

    PubMed  Google Scholar 

  13. Esnault, S. & Malter, J.S. Hyaluronic acid or TNF-α plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages differential intracellular pathways and mRNA binding proteins. J. Immunol. 171, 6780–6787 (2003).

    Article  CAS  Google Scholar 

  14. Esnault, S. & Malter, J.S. Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-α plus fibronectin-activated peripheral blood eosinophils. Blood 99, 4048–4052 (2002).

    Article  CAS  Google Scholar 

  15. Esnault, S. & Malter, J.S. Primary peripheral blood eosinophils rapidly degrade transfected granulocyte-macrophage colony-stimulating factor mRNA. J. Immunol. 163, 5228–5234 (1999).

    CAS  PubMed  Google Scholar 

  16. Carballo, E., Lai, W.S. & Blackshear, P.J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    CAS  PubMed  Google Scholar 

  17. Fan, X.C. & Steitz, J.A. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–3460 (1998).

    Article  CAS  Google Scholar 

  18. Capowski, E.E., Esnault, S., Bhattacharya, S. & Malter, J.S. Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. J. Immunol. 167, 5970–5976 (2001).

    Article  CAS  Google Scholar 

  19. Xu, N., Chen, C.Y. & Shyu, A.B. Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol. Cell. Biol. 21, 6960–6971 (2001).

    Article  CAS  Google Scholar 

  20. Sarkar, B., Xi, Q., He, C. & Schneider, R.J. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol. Cell. Biol. 23, 6685–6693 (2003).

    Article  CAS  Google Scholar 

  21. Loflin, P., Chen, C.Y. & Shyu, A.B. Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev. 13, 1884–1897 (1999).

    Article  CAS  Google Scholar 

  22. Tocci, M.J. et al. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J. Immunol. 143, 718–726 (1989).

    CAS  PubMed  Google Scholar 

  23. Sakuma, S. et al. Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int. Immunopharmacol. 1, 1219–1226 (2001).

    Article  CAS  Google Scholar 

  24. Meiser, B.M., Billingham, M.E. & Morris, R.E. Effects of cyclosporin, FK506, and rapamycin on graft-vessel disease. Lancet 338, 1297–1298 (1991).

    Article  CAS  Google Scholar 

  25. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  26. Stamnes, M.A. & Zuker, C.S. Peptidyl-prolyl cis-trans isomerases, cyclophilin, FK506-binding protein, and ninaA: four of a kind. Curr. Opin. Cell Biol. 2, 1104–1107 (1990).

    Article  CAS  Google Scholar 

  27. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  28. Winkler, K.E., Swenson, K.I., Kornbluth, S. & Means, A.R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647 (2000).

    Article  CAS  Google Scholar 

  29. Lu, P.J., Wulf, G., Zhou, X.Z., Davies, P. & Lu, K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  Google Scholar 

  30. Wulf, G.M. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  Google Scholar 

  31. Kita, H. et al. Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J. Exp. Med. 174, 745–748 (1991).

    Article  CAS  Google Scholar 

  32. Khan, L.N. et al. Attenuation of the allergen-induced late asthmatic reaction by cyclosporin A is associated with inhibition of bronchial eosinophils, interleukin-5, granulocyte macrophage colony-stimulating factor, and eotaxin. Am. J. Respir. Crit. Care Med. 162, 1377–1382 (2000).

    Article  CAS  Google Scholar 

  33. Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953–5960 (1998).

    Article  CAS  Google Scholar 

  34. Ignatovich, I.A. et al. Complexes of plasmid DNA with basic domain 47–57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278, 42625–42636 (2003).

    Article  CAS  Google Scholar 

  35. Lu, P.J., Zhou, X.Z., Liou, Y.C., Noel, J.P. & Lu, K.P. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J. Biol. Chem. 277, 2381–2384 (2002).

    Article  CAS  Google Scholar 

  36. Wilson, G.M. et al. Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J. Biol. Chem. 278, 33039–33048 (2003).

    Article  CAS  Google Scholar 

  37. Laroia, G., Sarkar, B. & Schneider, R.J. Ubiquitin-dependent mechanism regulates rapid turnover of AU-rich cytokine mRNAs. Proc. Natl. Acad. Sci. USA 99, 1842–1846 (2002).

    Article  CAS  Google Scholar 

  38. Basu, A. et al. Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation. Neoplasia 4, 218–227 (2002).

    Article  CAS  Google Scholar 

  39. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).

    Article  CAS  Google Scholar 

  40. Bhattacharya, S., Giordano, T., Brewer, G. & Malter, J.S. Identification of AUF-1 ligands reveals vast diversity of early response gene mRNAs. Nucleic Acids Res. 27, 1464–1472 (1999).

    Article  CAS  Google Scholar 

  41. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  Google Scholar 

  42. Wilson, G.M. et al. Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J. Biol. Chem. 278, 33029–33038 (2003).

    Article  CAS  Google Scholar 

  43. Chen, C.Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).

    Article  CAS  Google Scholar 

  44. Liu, L.Y. et al. Decreased expression of membrane IL-5 receptor alpha on human eosinophils: I. Loss of membrane IL-5 receptor alpha on airway eosinophils and increased soluble IL-5 receptor α in the airway after allergen challenge. J. Immunol. 169, 6452–6458 (2002).

    Article  CAS  Google Scholar 

  45. Cardenas, M.E., Muir, R.S., Breuder, T. & Heitman, J. Targets of immunophilin-immunosuppressant complexes are distinct highly conserved regions of calcineurin A. EMBO J. 14, 2772–2783 (1995).

    Article  CAS  Google Scholar 

  46. Liu, W., Youn, H.D., Zhou, X.Z., Lu, K.P. & Liu, J.O. Binding and regulation of the transcription factor NFAT by the peptidyl prolyl cis-trans isomerase Pin1. FEBS Lett. 496, 105–108 (2001).

    Article  CAS  Google Scholar 

  47. Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801 (2001).

    Article  CAS  Google Scholar 

  48. Lu, K.P., Liou, Y.C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181 (2003).

    Article  CAS  Google Scholar 

  49. Chen, C.Y., Xu, N. & Shyu, A.B. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol. Cell. Biol. 22, 7268–7278 (2002).

    Article  CAS  Google Scholar 

  50. Gherzi, R. et al. KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell 14, 571–583 (2004).

    Article  CAS  Google Scholar 

  51. Cao, H. Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Biochemistry 43, 13724–13738 (2004).

    Article  CAS  Google Scholar 

  52. Esclatine, A., Taddeo, B. & Roizman, B. Herpes simplex virus 1 induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-rich RNAs. J. Virol. 78, 8582–8592 (2004).

    Article  CAS  Google Scholar 

  53. Davis, R.J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556 (1993).

    CAS  PubMed  Google Scholar 

  54. Hansel, T.T. et al. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J. Immunol. Methods 145, 105–110 (1991).

    Article  CAS  Google Scholar 

  55. Ramesh, K.S., Rocklin, R.E. & Pincus, S.H. Phosphorylation and dephosphorylation of soluble proteins in human eosinophils. J. Cell. Biochem. 34, 203–211 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Sedgwick for eosinophils; K.P. Lu (Harvard University, Boston, Massachusetts) for the Pin1 WW domain cDNA; N. Jarjour for bronchoscopy samples; P. Bertics for critical reading of the manuscript; and members of the lab and the UW-Asthma SCOR group for suggestions. Supported by the National Institutes of Health (P50HL56396 to J.S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S Malter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Possible Pin1 targets in AREBPs. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, ZJ., Esnault, S. & Malter, J. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat Immunol 6, 1280–1287 (2005). https://doi.org/10.1038/ni1266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing