Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging

Journal name:
Nature Geoscience
Year published:
Published online


Some of Earth’s largest magmatic provinces result from the interaction between mid-ocean ridges and near-ridge hotspots, which are hypothesized to overlie plumes of upwelling mantle. Geodynamic models predict that upwelling plumes are sheared by the motion of the overlying tectonic plates and can connect to a nearby mid-ocean ridge by shallow flow beneath thin, young lithosphere. Here we present seismic tomographic images of the upper 300km of the mantle beneath the Galápagos Archipelago in the eastern Pacific Ocean. We observe a low-velocity anomaly, indicative of an upwelling plume, that is not deflected in the direction of plate motion. Instead, the anomaly tilts towards the mid-ocean ridge at depths well below the lithosphere. These characteristics of the plume–ridge connection beneath the Galápagos Archipelago are consistent with the presence of multiple stages of partial melting, melt extraction, and melt remixing within the plume and surrounding mantle. These processes affect the viscosity of the asthenosphere, alter the upwelling plume and influence the compositions of surface lavas. Our results imply that the coupling between the oceanic plate and plume upwelling beneath the Galápagos is weak. Multistage melting may similarly affect the geophysical and geochemical characteristics of other hotspots.

At a glance


  1. Map of the Galapagos Islands and seismic network.
    Figure 1: Map of the Galápagos Islands and seismic network.

    Triangles indicate seismic stations; the network consisted of ten portable broadband stations and the Global Seismographic Network (GSN) station PAYG. Selected islands and volcanoes are labelled in italics and red, respectively (SN, Sierra Negra; CA, Cerro Azul; W, Wolf). The black arrow indicates the direction of motion of the Nazca plate in a hotspot reference frame12. Bathymetry and topography in metres above sea level (masl). Inset shows the location in a broader context.

  2. Delay times of teleseismic S waves.
    Figure 2: Delay times of teleseismic S waves.

    Each delay time (circle) is plotted at the piercing point where the seismic wave path to a given station (triangle) intersects a horizontal plane at 300km depth. Delay times have been adjusted by station corrections (see Supplementary Information). Red and blue circles indicate positive (late) and negative (early) delays, respectively. The size of the symbol is proportional to the observed delay, as indicated by the scale at the top right in a. a, Station G06, located on Fernandina. b, GSN station PAYG, located on Santa Cruz. c, Station G03, located on Floreana. d, Station G09, located on Genovesa.

  3. Results of tomographic inversion for S-wave velocity structure.
    Figure 3: Results of tomographic inversion for S-wave velocity structure.

    Colour scale denotes the percentage deviation from the starting model (see Fig. 11 of ref. 22). ac, Map-view horizontal section at 40km depth (a), 80km depth (b), and 200km depth (c). d, East–west cross-section at 0°45′S. e, North–south cross-section at 91°W. Dashed lines in ac indicate locations of cross-sections d,e.

  4. Schematic illustration of mantle flow and melting and their relation to geochemical observations.
    Figure 4: Schematic illustration of mantle flow and melting and their relation to geochemical observations.

    a, North–south cross-section at 91°W, perpendicular to the plate motion. Also indicated are the mantle flow direction (green); ascent of carbonated and hydrous melts (dashed red arrows); ascent of silicate melts (solid red arrows); zone of melt mixing (thick red line); enriched plume (orange); dehydrated volume (grey); and zone of elevated temperature and water content within the plume (black curve). The latitudinal extent of the He anomaly is indicated by the box above the map. b, Map of 3He/4He ratios and anomalous seismic velocities at 200km depth (coloured region denotes shear velocities at least 0.75% lower than average). Helium data compiled from the GEOROC database. Numbers are average values for individual volcanoes; 3He/4He contoured at values of 11 and 15.

  5. Predicted and observed trace element compositions of magmas produced by melting of the Galapagos plume.
    Figure 5: Predicted and observed trace element compositions of magmas produced by melting of the Galápagos plume.

    A 0.1% carbonatite melt (thin line) and a calculated hybrid of that melt and a 5% silicate melt of the residue (dashed line) are compared with a basalt sample from Fernandina (thick line). The source is assumed to have 20% clinopyroxene and 10% garnet. Carbonatite–liquid distribution coefficients are from ref. 30. The Fernandina basalt composition48 has been corrected for 50% fractional crystallization. The source composition is depleted MORB (mid-ocean ridge basalt) mantle49. Concentrations are normalized to the primitive mantle composition50.


  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 4243 (1971).
  2. Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245247 (1997).
  3. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338343 (2004).
  4. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 13881390 (2009).
  5. Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331–332, 224236 (2012).
  6. Ribe, N. M. & Christensen, U. R. Three-dimensional modeling of plume–lithosphere interaction. J. Geophys. Res. 99, 669682 (1994).
  7. Ribe, N. M. The dynamics of plume–ridge interaction 2. Off-ridge plumes. J. Geophys. Res. 101, 1619516204 (1996).
  8. Feighner, M. A. & Richards, M. A. The fluid dynamics of plume–ridge and plume-plate interactions: An experimental investigation. Earth Planet. Sci. Lett. 129, 171182 (1995).
  9. Ito, G., Lin, J. & Graham, D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys. 41, 1017 (2003).
  10. Wilson, D. S. & Hey, R. N. History of rift propagation and magnetization intensity for the Cocos-Nazca spreading center. J. Geophys. Res. 100, 1004110056 (1995).
  11. Mittelstaedt, E. et al. Multiple expressions of plume–ridge interaction in the Galápagos: Volcanic lineaments and ridge jumps. Geochem. Geophys. Geosyst. 13, Q05018 (2012).
  12. Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321361 (2002).
  13. Morgan, W. J. Rodriguez, Darwin, Amsterdam,..., a second type of hotspot island. J. Geophys. Res. 83, 53555360 (1978).
  14. Harpp, K. & Geist, D. Wolf-Darwin lineament and plume–ridge interaction in northern Galápagos. Geochem. Geophys. Geosyst. 3, 8504 (2002).
  15. Schilling, J. G., Kingsley, R. H. & Devine, J. D. Galapagos hot spot-spreading center system 1. Spatial petrological and geochemical variations (83°W–111°W). J. Geophys. Res. 87, 55935610 (1982).
  16. Ito, G. T. & Lin, J. Mantle temperature anomalies along the past and paleoaxes of the Galápagos spreading center as inferred from gravity analyses. J. Geophys. Res. 100, 37333745 (1995).
  17. Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311327 (2002).
  18. Detrick, R. S. et al. Correlated geophysical, geochemical, and volcanological manifestations of plume–ridge interaction along the Galápagos Spreading Center. Geochem. Geophys. Geosyst. 3, 8501 (2002).
  19. Schilling, J., Fontignie, D., Blichert-Toft, J., Kingsley, R. & Tomza, U. Pb–Hf–Nd–Sr isotope variations along the Galápagos Spreading Center (101–83W): Constraints on the dispersal of the Galápagos mantle plume. Geochem. Geophys. Geosyst. 4, 8512 (2003).
  20. Ingle, S. et al. Mechanisms of geochemical and geophysical variations along the western Galápagos Spreading Center. Geochem. Geophys. Geosyst. 11, Q04003 (2010).
  21. Shorttle, O., Maclennan, J. & Jones, S. M. Control of the symmetry of plume–ridge interaction by spreading ridge geometry. Geochem. Geophys. Geosyst. 11, Q0AC05 (2010).
  22. Villagómez, D., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. J. Geophys. Res. 112, B07303 (2007).
  23. Hooft, E. E. E., Toomey, D. R. & Solomon, S. C. Anomalously thin transition zone beneath the Galápagos hotspot. Earth Planet. Sci. Lett. 216, 5564 (2003).
  24. Villagómez, D. R., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Crustal structure beneath the Galápagos Archipelago from ambient noise tomography and its implications for plume–lithosphere interactions. J. Geophys. Res. 116, B04310 (2011).
  25. Kurz, M. D. & Geist, D. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta 63, 41394156 (1999).
  26. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93108 (1996).
  27. Moore, W. B., Schubert, G. & Tackley, P. Three-dimensional simulations of plume–lithosphere interaction at the Hawaiian Swell. Science 279, 10081011 (1998).
  28. Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659662 (2006).
  29. Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211215 (2013).
  30. Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M. & Withers, A. C. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262, 5777 (2009).
  31. Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth. Planet. Sci. 34, 629653 (2006).
  32. Karato, S-I. Remote sensing of hydrogen in Earth’s mantle. Rev. Mineral. Geochem. 62, 343375 (2006).
  33. Hall, P. S. & Kincaid, C. Melting, dehydration, and the dynamics of off-axis plume–ridge interaction. Geochem. Geophys. Geosyst. 4, 8510 (2003).
  34. Harpp, K. S. & White, W. M. Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2, 1042 (2001).
  35. Hoernle, K. et al. Existence of complex spatial zonation in the Galápagos plume. Geology 28, 435438 (2000).
  36. White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume. J. Geophys. Res. 98, 1953319563 (1993).
  37. Geist, D. et al. Wolf Volcano, Galapagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. J. Petrol. 46, 21972224 (2005).
  38. Gibson, S. A. & Geist, D. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet. Sci. Lett. 300, 275286 (2010).
  39. Geist, D. J., White, W. M. & McBirney, A. R. Plume-asthenosphere mixing beneath the Galapagos archipelago. Nature 333, 657660 (1988).
  40. Graham, D. W., Christie, D. M. & Harpp, K. S. Mantle plume helium in submarine basalts from the Galápagos platform. Science 262, 20232026 (1993).
  41. Colin, A., Burnard, P. G., Graham, D. W. & Marrocchi, Y. Plume-ridge interaction along the Galapagos Spreading Center: Discerning between gas loss and source effects using neon isotopic compositions and 4He–40Ar–CO2 relative abundances. Geochim. Cosmochim. Acta 75, 11451160 (2011).
  42. Hofmann, A. W., Farnetani, C. G., Spiegelman, M. & Class, C. Displaced helium and carbon in the Hawaiian plume. Earth Planet. Sci. Lett. 312, 226236 (2011).
  43. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geosci. 4, 831838 (2011).
  44. Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci. 4, 874878 (2011).
  45. Richards, M. A. & Griffiths, R. W. Thermal entrainment by deflected mantle plumes. Nature 342, 900902 (1989).
  46. Ito, G., Lin, J. & Gable, C. W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galápagos plume–ridge system. J. Geophys. Res. 102, 1540315417 (1997).
  47. Hammond, W. C. & Toomey, D. R. Seismic velocity anisotropy and heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment (MELT) region of the East Pacific Rise from analysis of P and S body waves. J. Geophys. Res. 108, 2176 (2003).
  48. Geist, D. J. et al. Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).
  49. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 5372 (2005).
  50. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Pub. 42, 313345 (1989).

Download references

Author information


  1. Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA

    • Darwin R. Villagómez,
    • Douglas R. Toomey &
    • Emilie E. E. Hooft
  2. Department of Geological Sciences, University of Idaho, Moscow, Idaho 83844, USA

    • Dennis J. Geist
  3. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA

    • Sean C. Solomon
  4. Present address: ID Analytics, San Diego, California 92128, USA

    • Darwin R. Villagómez


D.R.V., D.R.T. and D.J.G. wrote the initial manuscript. D.R.V., D.R.T., E.E.E.H. and S.C.S. contributed to experiment design and collection of seismic data. D.R.V., D.R.T. and E.E.E.H. contributed to the analysis of seismic data and methods development. D.J.G. contributed to the petrologic calculations and to the development of geochemical models. All authors discussed the results and their implications and assisted in the final revisions to the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (2,749 KB)

    Supplementary Information

Additional data