Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

PRDM9 marks the spot

A new study demonstrates that PRDM9 variation in humans leads to profound differences in the activity of hotspots for both allelic recombination and genomic instability. Although PRDM9 is found to play a role in many more human hotspots than previously suspected, the search remains for additional, undetermined factors involved in defining hotspot locations and intensities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: View of how PRDM9 variation influences both allelic and nonallelic recombination at individual hotspots.

References

  1. Ptak, S.E. et al. Nat. Genet. 37, 429–434 (2005).

    Article  CAS  Google Scholar 

  2. Winckler, W. et al. Science 308, 107–111 (2005).

    Article  CAS  Google Scholar 

  3. Baudat, F. et al. Science 327, 836–840 (2010).

    Article  CAS  Google Scholar 

  4. Parvanov, E.D., Petkov, P.M. & Paigen, K. Science 327, 835 (2010).

    Article  CAS  Google Scholar 

  5. Myers, S. et al. Science 327, 876–879 (2010).

    Article  CAS  Google Scholar 

  6. Berg, I.L. et al. Nat. Genet. 42, 859–863 (2010).

    Article  CAS  Google Scholar 

  7. Myers, S., Freeman, C., Auton, A., Donnelly, P. & McVean, G. Nat. Genet. 40, 1124–1129 (2008).

    Article  CAS  Google Scholar 

  8. Borde, V. et al. EMBO J. 28, 99–111 (2009).

    Article  CAS  Google Scholar 

  9. Buard, J., Barthes, P., Grey, C. & de Massy, B. EMBO J. 28, 2616–2624 (2009).

    Article  CAS  Google Scholar 

  10. Lindsay, S.J., Khajavi, M., Lupski, J.R. & Hurles, M.E. Am. J. Hum. Genet. 79, 890–902 (2006).

    Article  CAS  Google Scholar 

  11. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. Science 310, 321–324 (2005).

    Article  CAS  Google Scholar 

  12. Kong, A. et al. Science 319, 1398–1401 (2008).

    Article  CAS  Google Scholar 

  13. Chowdhury, R., Bois, P.R., Feingold, E., Sherman, S.L. & Cheung, V.G. PLoS Genet. 5, e1000648 (2009).

    Article  Google Scholar 

  14. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  Google Scholar 

  15. Jeffreys, A.J. & Neumann, R. Hum. Mol. Genet. 14, 2277–2287 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil McVean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McVean, G., Myers, S. PRDM9 marks the spot. Nat Genet 42, 821–822 (2010). https://doi.org/10.1038/ng1010-821

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1010-821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing