Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations

Abstract

Lung cancer is the most common cause of death from cancer worldwide, and its incidence is increasing in East Asian and Western countries. To identify genetic factors that modify the risk of lung adenocarcinoma, we conducted a genome-wide association study in a Japanese cohort, with replication in two independent studies in Japanese and Korean individuals, in a total of 2,098 lung adenocarcinoma cases and 11,048 controls. The combined analyses identified two susceptibility loci for lung adenocarcinoma: TERT (rs2736100, combined P = 2.91 × 10−11, odds ratio (OR) = 1.27) and TP63 (rs10937405, combined P = 7.26 × 10−12, OR = 1.31). Fine mapping of the region containing TP63 showed that a SNP (rs4488809) in intron 1 of TP63 showed the most significant association. Our results suggest that genetic variation in TP63 may influence susceptibility to lung adenocarcinoma in East Asian populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Case-control association plots, LD map and genomic structure of the TP63 region in chromosome 3q28.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  2. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

  3. Daigo, Y. & Nakamura, Y. From cancer genomics to thoracic oncology: discovery of new biomarkers and therapeutic targets for lung and esophageal carcinoma. Gen. Thorac. Cardiovasc. Surg. 56, 43–53 (2008).

    Article  PubMed  Google Scholar 

  4. Toyoda, Y., Nakayama, T., Ioka, A. & Tsukuma, H. Trends in lung cancer incidence by histological type in Osaka, Japan. Jpn. J. Clin. Oncol. 38, 534–539 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sobue, T. et al. Trend of lung cancer incidence rate by histological type: a population-based study in Osaka, Japan. Jpn. J. Cancer Res. 90, 6–15 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thun, M.J. et al. Cigarette smoking and changes in the histopathology of lung cancer. J. Natl. Cancer Inst. 89, 1580–1586 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Devesa, S.S., Bray, F., Vizcaino, A.P. & Parkin, D.M. International lung cancer trends by histological type. Int. J. Cancer 117, 294–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Janssen-Heijnen, M.L. & Coebergh, J.W. The changing epidemiology of lung cancer in Europe. Lung Cancer 41, 245–258 (2003).

    Article  PubMed  Google Scholar 

  9. Yang, C.H. EGFR tyrosine kinase inhibitors for the treatment of NSCLC in East Asia: present and future. Lung Cancer 60 (Suppl. 2), S23–S30 (2008).

    Article  PubMed  Google Scholar 

  10. Jee, S.H., Kim, I.S., Suh, I., Shin, D. & Appel, L.J. Projected mortality from lung cancer in South Korea, 1980–2004. Int. J. Epidemiol. 27, 365–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Liam, C.K., Pang, Y.K., Leow, C.H., Poosparajah, S. & Menon, A. Changes in the distribution of lung cancer cell types and patient demography in a developing multiracial Asian country: experience of a university teaching hospital. Lung Cancer 53, 23–30 (2006).

    Article  PubMed  Google Scholar 

  12. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 2237–2246 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, S.F. et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin. Cancer Res. 10, 8195–8203 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Marchetti, A. et al. EGFR mutations in non-small-cell lung cancer. J. Clin. Oncol. 23, 857–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Matakidou, A., Eisen, T. & Houlston, R.S. Systematic review of the relationship between family history and lung cancer risk. Br. J. Cancer 93, 825–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. et al. Family history of cancer and risk of lung cancer among nonsmoking Chinese women. Cancer Epidemiol. Biomarkers Prev. 16, 2432–2435 (2007).

    Article  PubMed  Google Scholar 

  17. Hung, R.J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Amos, C.I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKay, J.D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40, 1404–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 40, 1407–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Broderick, P. et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 69, 6633–6641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Landi, M.T. et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, C. et al. Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69, 5065–5072 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Moll, U.M. & Slade, N. p63 and p73: roles in development and tumor formation. Mol. Cancer Res. 2, 371–386 (2004).

    CAS  PubMed  Google Scholar 

  26. Flores, E.R. The roles of p63 in cancer. Cell Cycle 6, 300–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Katoh, I., Aisaki, K., Kurata, S., Ikawa, S. & Ikawa, Y. p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 19, 3126–3130 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Petitjean, A. et al. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis 29, 273–281 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Kiemeney, L.A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40, 1307–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura, Y. The BioBank Japan project. Clin. Adv. Hematol. Oncol. 5, 696–697 (2007).

    PubMed  Google Scholar 

  31. Ohnishi, Y. et al. A high-throughput SNP typing system for genome-wide association studies. J. Hum. Genet. 46, 471–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrett, J.C., Fry, B., Maller, J. & Daly, M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN and the Human Genome Center, Institute of Medical Science, The University of Tokyo for their contribution to SNP genotyping. We also thank members of the BioBank Japan project, the Rotary Club of Osaka-Midosuji District 2660 Rotary International in Japan, and Research Institute and Hospital, National Cancer Center, Korea for supporting our study. Y.D. is a member of the Shiga Cancer Treatment Project supported by Shiga Prefecture (Japan). This work was conducted as a part of the BioBank Japan Project and supported by the Ministry of Education, Culture, Sports, Sciences and Technology of the Japanese government. Management of second replication samples in Korea was supported by grants 0710221 and 0940620 from the National Cancer Center, Korea.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. conceived the study; D.M., M.K., Y.N. and Y.D. designed the study; D.M., N.H., M.K. and Y.D. performed genotyping; D.M., M.K., Y.N. and Y.D. wrote the manuscript; A.T., T.M., T. Tsunoda and N.K. performed data analysis at the genome-wide phase; Y.N. and M.K. managed DNA samples belong to BioBank Japan; K.-A.Y., J.K., G.-K.L., J.I.Z. and J.S.L. managed second replication samples in Korea; D.M. and Y.D. summarized the results; Y.N., T. Takahashi, K.C., J.I. and Y.D. obtained funding for the study.

Corresponding author

Correspondence to Yataro Daigo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–6 (PDF 783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, D., Kubo, M., Takahashi, A. et al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. Nat Genet 42, 893–896 (2010). https://doi.org/10.1038/ng.667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.667

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer