Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus

Abstract

The extent to which individual neurons are interconnected selectively within brain circuits is an unresolved problem in neuroscience. Neurons can be organized into preferentially interconnected microcircuits, but whether this reflects genetically defined subpopulations is unclear. We found that the principal neurons in the main subdivisions of the hippocampus consist of distinct subpopulations that are generated during distinct time windows and that interconnect selectively across subdivisions. In two mouse lines in which transgene expression was driven by the neuron-specific Thy1 promoter, transgene expression allowed us to visualize distinct populations of principal neurons with unique and matched patterns of gene expression, shared distinct neurogenesis and synaptogenesis time windows, and selective connectivity at dentate gyrus-CA3 and CA3-CA1 synapses. Matched subpopulation marker genes and neuronal subtype markers mapped near clusters of olfactory receptor genes. The nonoverlapping matched timings of synaptogenesis accounted for the selective connectivities of these neurons in CA3. Therefore, the hippocampus contains parallel connectivity channels assembled from distinct principal neuron subpopulations through matched schedules of synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct transcriptomes of Lsi1 and Lsi2 hippocampal principal neurons.
Figure 2: Detection of Lsi1 and Lsi2 precursors and neurons during hippocampal development.
Figure 3: Temporal windows of Lsi1 and Lsi2 neurogenesis during hippocampal development.
Figure 4: Transcripts shared among Lsi1 or Lsi2 subpopulations in dentate gyrus, CA3 and CA1.
Figure 5: Distinct and matched synaptogenesis schedules by Lsi1 and Lsi2 subpopulations.
Figure 6: Selective connectivity between matched granule cells and CA3 pyramidal neuron subpopulations.
Figure 7: Selective connectivity between matched CA3 and CA1 pyramidal neuron subpopulations.
Figure 8: Influence of synaptogenesis timing and subpopulation identity on selective connectivity.

Similar content being viewed by others

References

  1. Brown, S.P. & Hestrin, S. Cell-type identity: a key to unlocking the function of neocortical circuits. Curr. Opin. Neurobiol. 19, 415–421 (2009).

    Article  CAS  Google Scholar 

  2. Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    Article  CAS  Google Scholar 

  3. Song, S., Sjostrom, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonramdom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  Google Scholar 

  4. Kampa, B.M., Letzkus, J.J. & Stuart, G.J. Cortical feed-forward networks for binding different streams of sensory information. Nat. Neurosci. 9, 1472–1473 (2006).

    Article  CAS  Google Scholar 

  5. Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    Article  CAS  Google Scholar 

  6. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  Google Scholar 

  7. Yu, Y.C., Bultje, R.S., Wang, X. & Shi, S.H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    Article  CAS  Google Scholar 

  8. Caroni, P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9 (1997).

    Article  CAS  Google Scholar 

  9. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  10. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

  11. Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).

    Article  CAS  Google Scholar 

  12. Amaral, D. & Lavenex, P. Hippocampal neuroanatomy. in The Hippocampus Book (eds. Andersen, P. et al.) 37–110 (Oxford Univ. Press, 2007).

  13. Lein, E.S., Zhao, X. & Gage, F.H. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 24, 3879–3889 (2004).

    Article  CAS  Google Scholar 

  14. Thompson, C.L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008).

    Article  CAS  Google Scholar 

  15. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    Article  CAS  Google Scholar 

  16. Gogolla, N., Galimberti, I., Deguchi, Y. & Caroni, P. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62, 510–525 (2009).

    Article  CAS  Google Scholar 

  17. Galimberti, I., Bednarek, E., Donato, F. & Caroni, P. EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65, 627–642 (2010).

    Article  CAS  Google Scholar 

  18. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 12, 627–636 (2009).

    Article  CAS  Google Scholar 

  19. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glia cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  Google Scholar 

  20. Altman, J. & Bayer, S.A. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol. 301, 325–342 (1990).

    Article  CAS  Google Scholar 

  21. Tole, S. & Grove, E.A. Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. J. Neurosci. 21, 1580–1589 (2001).

    Article  CAS  Google Scholar 

  22. Chehrehasa, F., Meedeniya, A.C., Dwyer, P., Abrahamsen, G. & Mackay-Sim, A. EdU, a new thymidine analogue for labeling proliferating cells in the nervous system. J. Neurosci. Methods 177, 122–130 (2009).

    Article  CAS  Google Scholar 

  23. Hodge, R.D. et al. Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J. Neurosci. 28, 3707–3717 (2008).

    Article  CAS  Google Scholar 

  24. Wojtowicz, J.M. & Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 1, 1399–1405 (2006).

    Article  CAS  Google Scholar 

  25. Li, G. et al. Hilar mossy cells share developmental influences with dentate granule neurons. Dev. Neurosci. 30, 255–261 (2008).

    Article  CAS  Google Scholar 

  26. Altman, J. & Bayer, S.A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365–381 (1990).

    Article  CAS  Google Scholar 

  27. Godfrey, P.A., Malnic, B. & Buck, L.B. The mouse olfactory receptor gene family. Proc. Natl. Acad. Sci. USA 101, 2156–2161 (2004).

    Article  CAS  Google Scholar 

  28. Dijk, F., Leeuwen, S.v. & Kamphuis, W. Differential effects of ischemia/reperfusion on amacrine cell subtype–specific transcript levels in the rat retina. Brain Res. 1026, 194–204 (2004).

    Article  CAS  Google Scholar 

  29. Zylka, M.J., Rice, F.L. & Anderson, D.J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    Article  CAS  Google Scholar 

  30. Jones, S.P., Rahimi, O., O'Boyle, M.P., Diaz, D.L. & Claiborne, B.J. Maturation of granule cell dendrites after mossy fiber arrival in hippocampal field CA3. Hippocampus 13, 413–427 (2003).

    Article  Google Scholar 

  31. Tremblay, M.E., Riad, M., Chierzi, S., Murai, K.K. & Pasquale, E. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J. Comp. Neurol. 512, 798–813 (2009).

    Article  Google Scholar 

  32. Frotscher, M., Zhao, S. & Förster, E. Development of cell and fiber layers in the dentate gyrus. Prog. Brain Res. 163, 133–142 (2007).

    Article  CAS  Google Scholar 

  33. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    Article  CAS  Google Scholar 

  34. Noctor, S.C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  35. Baumgardt, M., Karlsson, D., Terriente, J., Diaz-Benjumea, F.J. & Thor, S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139, 969–982 (2009).

    Article  CAS  Google Scholar 

  36. Petrovic, M. & Hummel, T. Temporal identity in axonal target layer recognition. Nature 456, 800–803 (2008).

    Article  CAS  Google Scholar 

  37. Baek, M. & Mann, R.S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosphila. J. Neurosci. 29, 6904–6916 (2009).

    Article  CAS  Google Scholar 

  38. Elliott, J., Jolicoeur, C., Ramamurthy, V. & Cayouette, M. Ikaros confers early temporal competence to mouse retinal progenitor cell. Neuron 60, 26–39 (2008).

    Article  CAS  Google Scholar 

  39. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  Google Scholar 

  40. Miyoshi, G., Butt, S.J.B., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).

    Article  CAS  Google Scholar 

  41. Gelman, D.M. & Marin, O. Generation of interneuron diversity in the mouse cerebral cortex. Eur. J. Neurosci. 31, 2136–2141 (2010).

    Article  Google Scholar 

  42. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    Article  CAS  Google Scholar 

  43. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  44. McLean, D.L. & Fetcho, J.R. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J. Neurosci. 29, 13566–13577 (2009).

    Article  CAS  Google Scholar 

  45. Espinosa, J.S. & Luo, L. Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J. Neurosci. 28, 2301–2312 (2008).

    Article  CAS  Google Scholar 

  46. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    Article  CAS  Google Scholar 

  47. Colgin, L.L., Moser, E.I. & Moser, M.B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    Article  CAS  Google Scholar 

  48. Pinaud, R. et al. Detection of two mRNA species at single-cell resolution by double-fluorescence in situ hybridization. Nat. Protoc. 3, 1370–1379 (2008).

    Article  CAS  Google Scholar 

  49. Knott, G.W., Holtmaat, A., Trachtenberg, J.T., Svoboda, K. & Welker, E. A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis. Nat. Protoc. 4, 1145–1156 (2009).

    Article  CAS  Google Scholar 

  50. Gogolla, N., Galimberti, I., DePaola, V. & Caroni, P. Preparation of organotypic slice cultures for long term live imaging. Nat. Protoc. 1, 1223–1226 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Arber, A. Lüthi and B. Roska (Friedrich Miescher Institute; FMI) for comments on the manuscript, C. Genoud (FMI) for assistance with immuno-electron microscopy, M. Wiechert and A. Ponti (FMI) for data analysis assistance, and S. Arber for the rabies-mCherry virus. The FMI is part of the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.D. conceived and carried out the gene expression and the adult subpopulation mapping analysis. F.D. conceived and carried out the neurogenesis and synaptogenesis analysis and parts of the electron microscopy and connectivity analysis. I.G. conceived and carried out most of the connectivity analysis. E.C. carried out and optimized the cell genomics experiments. P.C. helped devise the experiments and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pico Caroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 3728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguchi, Y., Donato, F., Galimberti, I. et al. Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nat Neurosci 14, 495–504 (2011). https://doi.org/10.1038/nn.2768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing