Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing

Abstract

Genetically targeted light-activated ion channels and pumps make it possible to determine the role of specific neurons in neuronal circuits, information processing and behavior. We developed a K+-selective ionotropic glutamate receptor that reversibly inhibits neuronal activity in response to light in dissociated neurons and brain slice and also reversibly suppresses behavior in zebrafish. The receptor is a chimera of the pore region of a K+-selective bacterial glutamate receptor and the ligand-binding domain of a light-gated mammalian kainate receptor. This hyperpolarizing light-gated channel, HyLighter, is turned on by a brief light pulse at one wavelength and turned off by a pulse at a second wavelength. The control is obtained at moderate intensity. After optical activation, the photocurrent and optical silencing of activity persists in the dark for extended periods. The low light requirement and bi-stability of HyLighter represent advantages for the dissection of neural circuitry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chimeras of the iGluR6 LBD and the sGluR0 K+-selective pore.
Figure 2: Glutamate gates K+ currents in iGluR6-p0 chimeras.
Figure 3: Photo-control of K+ currents.
Figure 4: Optical inhibition of neuronal activity in dissociated cultured hippocampal neurons.
Figure 5: Silencing of activity in cultured hippocampal slice.
Figure 6: HyLighter expressed in motorneurons of zebrafish larvae reversibly suppresses escape response.

References

  1. Herlitze, S. & Landmesser, L.T. New optical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 17, 87–94 (2007).

    Article  CAS  Google Scholar 

  2. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  3. Ellis-Davies, G.C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    Article  CAS  Google Scholar 

  4. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  5. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  6. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  7. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  8. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  9. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299 (2007).

    Article  Google Scholar 

  10. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  11. Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).

    Article  CAS  Google Scholar 

  12. Suh, G.S.B. et al. Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905–908 (2007).

    Article  CAS  Google Scholar 

  13. Zhang, W., Ge, W.P. & Wang, Z.R. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2–mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405–2416 (2007).

    Article  Google Scholar 

  14. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  Google Scholar 

  15. Franks, C.J., Murray, C., Ogden, D., O'Connor, V. & Holden-Dye, L. A comparison of electrically evoked and channel rhodopsin–evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans. Invert. Neurosci. 9, 43–56 (2009).

    Article  CAS  Google Scholar 

  16. Liu, Q., Hollopeter, G. & Jorgensen, E.M. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc. Natl. Acad. Sci. USA 106, 10823–10828 (2009).

    Article  CAS  Google Scholar 

  17. Liewald, J.F. et al. Optogenetic analysis of synaptic function. Nat. Methods 5, 895–902 (2008).

    Article  CAS  Google Scholar 

  18. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  19. Arrenberg, A.B., Del Bene, F. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl. Acad. Sci. USA 106, 17968–17973 (2009).

    Article  CAS  Google Scholar 

  20. Douglass, A.D., Kraves, S., Deisseroth, K., Schier, A.F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2–evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008).

    Article  CAS  Google Scholar 

  21. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  22. Wyart, C. et al. Optogenetic dissection of a behavioral module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    Article  CAS  Google Scholar 

  23. Ayling, O.G.S., Harrison, T.C., Boyd, J.D., Goroshkov, A. & Murphy, T.H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224 (2009).

    Article  CAS  Google Scholar 

  24. Lagali, P.S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).

    Article  CAS  Google Scholar 

  25. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. Optical deconstruction of Parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  Google Scholar 

  26. Zhao, S. et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141–154 (2008).

    Article  CAS  Google Scholar 

  27. Kuner, T., Seeburg, P.H. & Guy, H.R. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci. 26, 27–32 (2003).

    Article  CAS  Google Scholar 

  28. Villmann, C., Strutz, N., Morth, T. & Hollmann, M. Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. Eur. J. Neurosci. 11, 1765–1778 (1999).

    Article  CAS  Google Scholar 

  29. Wo, Z.G. & Oswald, R.E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995).

    Article  CAS  Google Scholar 

  30. Wood, M.W., VanDongen, H.M. & VanDongen, A.M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 4882–4886 (1995).

    Article  CAS  Google Scholar 

  31. Gereau, R.W. IV & Swanson, G. The Glutamate Receptors, Vol. 1 (Humana Press, Totowa, New Jersey, 2008).

  32. Chen, G.Q., Cui, C., Mayer, M.L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  Google Scholar 

  33. Hansen, K.B., Yuan, H. & Traynelis, S.F. Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr. Opin. Neurobiol. 17, 281–288 (2007).

    Article  CAS  Google Scholar 

  34. Mayer, M.L. Glutamate receptor ion channels. Curr. Opin. Neurobiol. 15, 282–288 (2005).

    Article  CAS  Google Scholar 

  35. Mayer, M.L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001).

    Article  CAS  Google Scholar 

  36. Lee, J.H. et al. Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. J. Mol. Biol. 376, 308–316 (2008).

    Article  CAS  Google Scholar 

  37. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).

    Article  CAS  Google Scholar 

  38. Schmid, S.M., Kott, S., Sager, C., Huelsken, T. & Hollmann, M. The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc. Natl. Acad. Sci. USA 106, 10320–10325 (2009).

    Article  CAS  Google Scholar 

  39. Hoffmann, J., Villmann, C., Werner, M. & Hollmann, M. Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Mol. Cell. Neurosci. 33, 358–370 (2006).

    Article  CAS  Google Scholar 

  40. Hoffmann, J., Gorodetskaia, A. & Hollmann, M. Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Mol. Cell. Neurosci. 33, 335–343 (2006).

    Article  CAS  Google Scholar 

  41. Yelshansky, M.V., Sobolevsky, A.I., Jatzke, C. & Wollmuth, L.P. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J. Neurosci. 24, 4728–4736 (2004).

    Article  CAS  Google Scholar 

  42. Numano, R. et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc. Natl. Acad. Sci. USA 106, 6814–6819 (2009).

    Article  CAS  Google Scholar 

  43. Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).

    Article  CAS  Google Scholar 

  44. Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 (2007).

    Article  CAS  Google Scholar 

  45. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Article  CAS  Google Scholar 

  46. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 458, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  47. Pasternack, A. et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J. Biol. Chem. 277, 49662–49667 (2002).

    Article  CAS  Google Scholar 

  48. Kotani, T., Nagayoshi, S., Urasaki, A. & Kawakami, K. Transposon-mediated gene trapping in zebrafish. Methods 39, 199–206 (2006).

    Article  CAS  Google Scholar 

  49. Borisenko, V. & Woolley, G.A. Reversibility of conformational switching in light-sensitive peptides. J. Photochem. Photobiol. A Chem. 173, 21–28 (2005).

    Article  CAS  Google Scholar 

  50. Bunce, N.J., Ferguson, G., Forber, C.L. & Stachnyk, G.J. Sterically hindered azobenzenes: isolation of cis isomers and kinetics of thermal cis > trans isomerization. J. Org. Chem. 52, 394–398 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Partin, K. Kainanen, E. Gouaux and M. Hollmann for constructs, G. Sandoz, P. Koprowski and F. Tombola for discussions, D. Fortin, T. Tracey, K. Greenberg, A. Pham, M. Soden, H. Lu, E. Warp, K. McDaniel, R. Arant and Z. Fu for technical assistance, and M. Volgraf and V. Franckevicius for MAG compounds. This work was supported by the US National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (5PN2EY018241), the Human Frontier Science Program (RPG23-2005), the National Science Foundation (FIBR 43C-1081892), a fellowship of the European Molecular Biology Organization (to H.J.) and a Marie-Curie fellowship (to C.W.; the fellowship was obtained with the laboratory CNRS-UMR5020 'Neurosciences Sensorielles, Comportement Cognition').

Author information

Authors and Affiliations

Authors

Contributions

H.J. designed chimeric proteins, conducted experiments in HEK293 cells and neuronal cultures, contributed to experiments in brain slices and zebrafish, analyzed data and wrote the manuscript. S.S. conducted experiments in brain slices, analyzed data and wrote the manuscript. C.W. conducted experiments in zebrafish, analyzed data and wrote the manuscript. D.T. developed photoswitching methodology and provided photoswitches. E.Y.I. designed chimeric proteins, developed photoswitching methodology, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janovjak, H., Szobota, S., Wyart, C. et al. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13, 1027–1032 (2010). https://doi.org/10.1038/nn.2589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing