Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching

Abstract

The refinement of neural circuits during development depends on a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin brain-derived neurotrophic factor (BDNF) is essential for the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However, the mechanisms that translate extracellular signals into the formation of axonal branches are incompletely understood. We found that MAP kinase phosphatase-1 (MKP-1) controls axon branching. MKP-1 expression induced by BDNF signaling caused spatiotemporal deactivation of c-jun N-terminal kinase (JNK), which reduced the phosphorylation of JNK substrates that destabilize microtubules. Indeed, neurons from mkp-1 null mice could not produce axon branches in response to BDNF. Our results identify a signaling mechanism that regulates axonal branching and provide a framework for studying the molecular mechanisms of innervation and axonal remodeling under normal and pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gain- and loss-of-function of MKP-1 in vivo affect neural development.
Figure 2: JNK is the MKP-1 substrate that alters axonal morphology.
Figure 3: Induction of MKP-1 expression by BDNF.
Figure 4: BDNF controls MKP-1 expression in a spatiotemporal manner.
Figure 5: MKP-1 mediates BDNF-induced axon branching.

Similar content being viewed by others

References

  1. Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Marshak, S., Nikolakopoulou, A.M., Dirks, R., Martens, G.J. & Cohen-Cory, S. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. J. Neurosci. 27, 2444–2456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, J.K., Dorey, K., Ishibashi, S. & Amaya, E. BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. BMC Dev. Biol. 7, 59 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Danzer, S.C., Crooks, K.R., Lo, D.C. & McNamara, J.O. Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 22, 9754–9763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martínez, A. et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li, Z., Van Aelst, L. & Cline, H.T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hutchins, B.I. & Kalil, K. Differential outgrowth of axons and their branches is regulated by localized calcium transients. J. Neurosci. 28, 143–153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerecke, K.M., Wyss, J.M. & Carroll, S.L. Neuregulin-1β induces neurite extension and arborization in cultured hippocampal neurons. Mol. Cell. Neurosci. 27, 379–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal–regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Chao, M.V. Growth factor signaling: where is the specificity? Cell 68, 995–997 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Boutros, T., Chevet, E. & Metrakos, P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death and cancer. Pharmacol. Rev. 60, 261–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Keyse, S.M. & Emslie, E.A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359, 644–647 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element–binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doi, M. et al. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. J. Biol. Rhythms 22, 127–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Carrasco, D. & Bravo, R. Expression of the nontransmembrane tyrosine phosphatase gene erp during mouse organogenesis. Cell Growth Differ. 4, 849–859 (1993).

    CAS  PubMed  Google Scholar 

  17. Maisonpierre, P.C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Langevin, L.M. et al. Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon. Dev. Dyn. 236, 1273–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Owens, D.M. & Keyse, S.M. Differential regulation of MAP kinase signaling by dual-specificity protein phosphatases. Oncogene 26, 3203–3213 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Oliva, A.A. Jr., Atkins, C.M., Copenagle, L. & Banker, G.A. Activated c-Jun N-terminal kinase is required for axon formation. J. Neurosci. 26, 9462–9470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slack, D.N., Seternes, O.M., Gabrielsen, M. & Keyse, S.M. Distinct binding determinants for ERK2/p38α and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J. Biol. Chem. 276, 16491–16500 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Camps, M. et al. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262–1265 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Levin-Salomon, V., Kogan, K., Ahn, N.G., Livnah, O. & Engelberg, D. Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases. J. Biol. Chem. 283, 34500–34510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bogoyevitch, M.A. & Kobe, B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev. 70, 1061–1095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Poulain, F.E. & Sobel, A. The “SCG10-like protein” SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell. Neurosci. 34, 137–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Tararuk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Glorioso, C. et al. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol. Psychiatry 11, 633–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Rico, B., Xu, B. & Reichardt, L.F. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat. Neurosci. 5, 225–233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyoshi, G. et al. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J. Neurosci. 30, 1582–1594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balkowiec, A. & Katz, D.M. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J. Neurosci. 20, 7417–7423 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brondello, J.M., Pouyssegur, J. & McKenzie, F.R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514–2517 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Lin, Y.W. & Yang, J.L. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem. 281, 915–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Cox, L.J., Hengst, U., Gurskaya, N.G., Lukyanov, K.A. & Jaffrey, S.R. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat. Cell Biol. 10, 149–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dorfman, K. et al. Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13, 925–931 (1996).

    CAS  PubMed  Google Scholar 

  36. Ibáñez, C.F. Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol. 17, 519–528 (2007).

    Article  PubMed  Google Scholar 

  37. DiStefano, P.S. et al. The neurotrophins BDNF, NT-3 and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Baquet, Z.C., Gorski, J.A. & Jones, K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–4258 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Waetzig, V. & Herdegen, T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage. Trends Pharmacol. Sci. 26, 455–461 (2005).

    CAS  PubMed  Google Scholar 

  40. Chang, L., Jones, Y., Ellisman, M.H., Goldstein, L.S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Curmi, P.A. et al. Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct. Funct. 24, 345–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Suh, L.H., Oster, S.F., Soehrman, S.S., Grenningloh, G. & Sretavan, D.W. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wise, S.P. & Jones, E.G. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168, 313–343 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R. & Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369–4380 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093–1101 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, J.J. et al. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab. 4, 61–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Jeanneteau, F., Garabedian, M.J. & Chao, M.V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl. Acad. Sci. USA 105, 4862–4867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Alliance for Research on Schizophrenia and Depression (F.J. and G.M.), the Human Frontier Science Program Organization (K.D.) and grants from the US National Institutes of Health to M.V.C. (NS21072 and HD23315) and A.M.B. (R01 AR46504).

Author information

Authors and Affiliations

Authors

Contributions

F.J. and K.D. designed, performed and analyzed experiments. F.J., K.D. and M.V.C. wrote the manuscript. G.M. helped with the in utero electroporations. G.M. and A.M.B. provided mice and reagents.

Corresponding authors

Correspondence to Freddy Jeanneteau or Katrin Deinhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanneteau, F., Deinhardt, K., Miyoshi, G. et al. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 13, 1373–1379 (2010). https://doi.org/10.1038/nn.2655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing