Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells

Abstract

Purkinje cells are the sole output neurons of the cerebellar cortex and their dysfunction causes severe ataxia. We found that Purkinje cells could be robustly generated from mouse embryonic stem (ES) cells by recapitulating the self-inductive signaling microenvironments of the isthmic organizer. The cell-surface marker Neph3 enabled us to carry out timed prospective selection of Purkinje cell progenitors, which generated morphologically characteristic neurons with highly arborized dendrites that expressed mature Purkinje cell–specific markers such as the glutamate receptor subunit GluRδ2. Similar to mature Purkinje cells, these neurons also showed characteristic spontaneous and repeated action potentials and their postsynaptic excitatory potentials were generated exclusively through nonNMDA glutamate receptors. Fetal transplantation of precursors isolated by fluorescence-activated cell sorting showed orthotopic integration of the grafted neurons into the Purkinje cell layer with their axons extending to the deep cerebellar nuclei and dendrites receiving climbing and parallel fibers. This selective preparation of bona fide Purkinje cells should aid future investigation of this important neuron.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fgf2 and insulin cooperatively induce generation of midbrain-hindbrain identity in ES cells in SFEBq culture.
Figure 2: Sequential treatment of Fgf2 and a Shh inhibitor in the presence of insulin induces cerebellar plate precursors in SFEBq culture.
Figure 3: Generation of Purkinje cells in SFEBq/FIC culture in Transwell culture.
Figure 4: ES cell–derived neuroepithelial rosettes express cerebellar progenitor markers in SFEBq culture.
Figure 5: Neph3+ progenitors on day 13 in SFEBq/FIC culture efficiently generate Purkinje cells with morphological and functional characteristics.
Figure 6: Orthotopic integration of ES cell–derived Purkinje cells into the cerebellum.

References

  1. Wingate, R.J.T. & Hatten, M.E. The role of the rhombic lip in avian cerebellum development. Development 126, 4395–4404 (1999).

    CAS  PubMed  Google Scholar 

  2. Zervas, M., Milet, S., Ahn, S. & Joyner, A.L. Cell behavior and genetic lineage of the mesencephalon and rhombomere 1. Neuron 43, 345–357 (2004).

    Article  CAS  Google Scholar 

  3. Park, C., Falls, W., Finger, J.H., Longo-Guess, C.M. & Ackerman, S.L. Deletion in Catna 2, encoding alpha N-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat. Genet. 31, 279–284 (2002).

    Article  CAS  Google Scholar 

  4. Hoshino, M. et al. Ptf1a, a HLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47, 201–213 (2005).

    Article  CAS  Google Scholar 

  5. Machold, R. & Fishell, G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48, 17–24 (2005).

    Article  CAS  Google Scholar 

  6. Ben-Arie, N. et al. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997).

    Article  CAS  Google Scholar 

  7. Fink, A.J. et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J. Neurosci. 26, 3066–3076 (2006).

    Article  CAS  Google Scholar 

  8. Joyner, A.L. Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20 (1996).

    Article  CAS  Google Scholar 

  9. Crossley, P.H., Martinez, S. & Martin, G. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    Article  CAS  Google Scholar 

  10. Liu, A., Losos, K. & Joyner, A.L. FGF8 can activate Gbx2 and transform regions of the rostral mouse into a hindbrain fate. Development 126, 4827–4838 (1999).

    CAS  PubMed  Google Scholar 

  11. Martinez, S., Crossley, P.H., Cobos, I., Rubenstein, J.L.R. & Martin, G.R. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via repressive effect on Otx2 expression. Development 126, 1189–1200 (1999).

    CAS  PubMed  Google Scholar 

  12. Meyers, E.N., Lewandoski, M. & Martin, G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18, 136–141 (1998).

    Article  CAS  Google Scholar 

  13. Sato, T., Araki, I. & Nakamura, H. Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128, 2461–2469 (2001).

    CAS  PubMed  Google Scholar 

  14. Thomas, K.R. & Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  CAS  Google Scholar 

  15. McMahon, A.P., Joyner, A.L., Bradley, A. & McMahon, J.A. The midbrain-hindbrain phenotype of Wnt-1/Wnt-1 mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcitum. Cell 69, 581–595 (1992).

    Article  CAS  Google Scholar 

  16. Simeone, A. Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet. 16, 237–240 (2000).

    Article  CAS  Google Scholar 

  17. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  18. Su, H.-L. et al. Generation of cerebellar neuron precursors from embryonic stem cells. Dev. Biol. 290, 287–296 (2006).

    Article  CAS  Google Scholar 

  19. Salero, E. & Hatten, M.E. Differentiation of ES cells into cerebellar neurons. Proc. Natl. Acad. Sci. USA 104, 2997–3002 (2007).

    Article  CAS  Google Scholar 

  20. Tao, O. et al. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J. Neurosci. Res. 88, 234–247 (2010).

    Article  CAS  Google Scholar 

  21. Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl. Acad. Sci. USA 105, 11796–11801 (2008).

    Article  CAS  Google Scholar 

  22. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  23. Davis, C.A. & Joyner, A.L. Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev. 2, 1736–1744 (1988).

    Article  CAS  Google Scholar 

  24. Ye, W., Shimamura, K., Rubenstein, J.L.R., Hynes, M.A. & Rosenthal, A. Fgf and Shh signals control dopaminergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  25. Minaki, Y., Nakatani, T., Mizuhara, E., Inoue, T. & Ono, Y. Identification of a novel transcriptional co-repressor, Corl2, as a cerebellar Purkinje cell–selective marker. Gene Expr. Patterns 8, 418–423 (2008).

    Article  CAS  Google Scholar 

  26. Alder, J., Lee, K.J., Jessel, T.M. & Hatten, M.E. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat. Neurosci. 2, 535–540 (1999).

    Article  CAS  Google Scholar 

  27. Wilson, L. & Maden, M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev. Biol. 282, 1–13 (2005).

    Article  CAS  Google Scholar 

  28. Mizuhara, E. et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev. Biol. 338, 202–214 (2010).

    Article  CAS  Google Scholar 

  29. Altman, J. & Bayer, S.A. Development of the Cerebellar System in Relation to its Evolution, Structures and Functions (CRC Press, Boca Raton, Florida, 1997).

  30. Maricich, S.M. & Herrup, K. Pax2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J. Neurobiol. 41, 281–294 (1999).

    Article  CAS  Google Scholar 

  31. Baptista, C.A., Hatten, M.E., Blazeski, R. & Mason, C.A. Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12, 243–260 (1994).

    Article  CAS  Google Scholar 

  32. Hirano, T. & Kasono, K. Spatial distribution of and inhibitory synapses on a Purkinje cell in a rat cerebellar culture. J. Neurophysiol. 70, 1316–1325 (1993).

    Article  CAS  Google Scholar 

  33. Raman, I.M. & Bean, B.P. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19, 1663–1674 (1999).

    Article  CAS  Google Scholar 

  34. Hirano, T. & Hagiwara, S. Synaptic transmission between rat cerebellar granule and Purkinje cells in dissociated cell culture: effects of excitatory-amino acid transmitter antagonists. Proc. Natl. Acad. Sci. USA 85, 934–938 (1988).

    Article  CAS  Google Scholar 

  35. Miyazaki, T., Fukaya, M., Shimizu, H. & Watanabe, M. Subtype switching of vesicular glutamate transporters at parallel fibre–Purkinje cell synapses in developing mouse cerebellum. Eur. J. Neurosci. 17, 2563–2572 (2003).

    Article  Google Scholar 

  36. Matsuda, K. et al. Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapses organizer. Science 328, 363–368 (2010).

    Article  CAS  Google Scholar 

  37. Uemura, T. et al. Trans-synaptic interaction of GluRδ2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079 (2010).

    Article  CAS  Google Scholar 

  38. Garin, N. & Escher, G. The development of inhibitory synaptic specialization in the mouse deep cerebellar nuclei. Neuroscience 105, 431–441 (2001).

    Article  CAS  Google Scholar 

  39. Ang, S.L. & Rossant, J. Anterior mesendoderm induces mouse engrailed genes in explant cultures. Development 118, 139–149 (1993).

    CAS  PubMed  Google Scholar 

  40. Frontali, M. Spinocerebellar ataxia type 6: Channelopathy or glutamine repeat disorder? Brain Res. Bull. 56, 227–231 (2001).

    Article  CAS  Google Scholar 

  41. Cendelin, J.I., Korelusova, I. & Vozeh, F. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult lurcher mutant mice. Cerebellum 8, 35–45 (2009).

    Article  Google Scholar 

  42. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13, 196–202 (1996).

    Article  CAS  Google Scholar 

  43. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with carletinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mice. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  Google Scholar 

  44. Johansson, B.M. & Wiles, M.V. Evidence of involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151 (1995).

    Article  CAS  Google Scholar 

  45. Tabata, T. et al. A reliable method for dissociated mouse cerebellar cells enriched for Purkinje neurons. J. Neurosci. Methods 104, 45–53 (2000).

    Article  CAS  Google Scholar 

  46. Tomomura, M., Rice, D.S., Morgan, J.I. & Yuzaki, M. Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur. J. Neurosci. 14, 57–63 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Enomoto and M. Eiraku for comments, T. Wataya for help in tissue preparation and members of the Sasai laboratory for discussion and advice. This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (Japan), the Kobe Cluster Project, the Leading Project (Y.S.) and the National Center of Neurology and Psychiatry (K.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.M. performed the experiments that comprise the main body of this work. A.N. assisted with cell culture and histology. Y.O. and E.M. contributed to the FACS analysis. H.M. and T.H. performed electrophysiological analysis. S.H. and A.K. contributed to the ataxia model mouse analysis. K.O. and Y.Y. provided GAD-GFP transgenic mice. Y.S. wrote the manuscript and designed the experiments with K.M.

Corresponding author

Correspondence to Yoshiki Sasai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 12795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muguruma, K., Nishiyama, A., Ono, Y. et al. Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells. Nat Neurosci 13, 1171–1180 (2010). https://doi.org/10.1038/nn.2638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2638

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing