Articles in 2024

Filter By:

  • The Sehgal lab presents data showing that the non-cell autonomous pathway of glial lipid droplet formation occurs during sleep and helps to resolve neuronal reactive oxygen species (ROS). This promotes neuronal function after an active day. Hence, this pathway has an important physiological function beyond its previously described role in ROS-associated diseases, including Alzheimer’s disease.

    • Lindsey D. Goodman
    • Matthew J. Moulton
    • Hugo J. Bellen
    News & Views
  • Both caloric restriction and obesity affect autoimmune diseases. The activation of brainstem neurons in the ventrolateral medulla (VLM) with fasting suppresses experimental autoimmune diseases. Stimulation of VLM neurons alters T cell traffic by redistributing immune cells to bone marrow and reduces inflammatory cytokine production, thus providing therapy of experimental autoimmunity.

    • Noga Or-Geva
    • Lawrence Steinman
    News & Views
  • Muller et al. demonstrate that reward signals recorded from the frontal cortex of nonhuman primates exhibit a population-based scheme for learning probability distributions over reward values. This study provides evidence that neural signals outside of the midbrain reflect the principles of distributional reinforcement-learning theory.

    • Tao Hong
    • William R. Stauffer
    News & Views
  • As Nature Neuroscience celebrates its 25th anniversary, we are having conversations with both established leaders in the field and those earlier in their careers to discuss how the field has evolved and where it is heading. This month we are talking to Nancy Ip, Morningside Professor of Life Science and president of the Hong Kong University of Science and Technology. We discussed her path from academia to industry and back, her experiences as a working mother and how she has helped scientific research in Hong Kong to flourish.

    • Shari Wiseman
    Q&A
  • Minakuchi et al. find that separable inhibitory inputs to a critical hypothalamic aggression-control node can influence the evolution of an aggressive state by independently modulating either the motivational phase or the action phase.

    • Tomohito Minakuchi
    • Eartha Mae Guthman
    • Annegret L. Falkner
    Article
  • Mohebi et al. report that dopamine (DA) pulses in different rat striatal subregions signal prediction errors across different timescales. In this way, one learning process may achieve a range of adaptive behaviors.

    • Ali Mohebi
    • Wei Wei
    • Joshua D. Berke
    ArticleOpen Access
  • A widespread group of cerebellar projections form monosynaptic excitatory synapses with neurons throughout the substantia nigra pars compacta (SNc). These projections contain information associated with movement and reward and can rapidly increase SNc neuron activity, and thereby basal ganglia dopamine levels, which contribute to movement initiation, vigor and reward processing.

    Research Briefing