Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Untangling the confusion around land carbon science and climate change mitigation policy

An Erratum to this article was published on 28 August 2013

This article has been updated

Abstract

Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in the primary stocks of the global carbon cycle.

Similar content being viewed by others

Change history

  • 20 August 2013

    In the version of this Perspective originally published, in Table 2, section (c), the fossil fuel carbon emissions were incorrectly described in the Land and Ocean categories. This error has now been corrected in the HTML and PDF versions.

References

  1. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Article  CAS  Google Scholar 

  2. Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).

    Article  CAS  Google Scholar 

  3. Global Forest Resources Assessment 2010: Main Report Forestry Paper 163 (FAO, 2010).

  4. Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl Acad. Sci. USA 107, 16739–16742 (2010).

    Article  Google Scholar 

  5. Vieweg, M. et al. Climate Action Tracker Update, 3 September 2012 (Climate Action Tracker, 2012); available via http://go.nature.com/CXg1v1

    Google Scholar 

  6. Shine, K. P., Derwent, R. G., Wuebbles, D. J. & Morcrette, J. J. in IPCC First Assessment Report 1990: Scientific Assessment of Climate Change (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) 45–68 (Cambridge Univ. Press, 1990).

    Google Scholar 

  7. Solomon, S., Plattnerb, G., Knuttic, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  8. Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Climatic Change 90, 283–297 (2008).

    Article  CAS  Google Scholar 

  9. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–34 (2009).

    Article  CAS  Google Scholar 

  10. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    Article  Google Scholar 

  11. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  12. Roxburgh S. H. et al. Organic carbon partitioning in soil and litter in subtropical woodlands and open forests: A case study from the Brigalow Belt, Queensland. Rangeland J. 28, 115–125 (2006).

    Article  Google Scholar 

  13. House, J. I., Prentice, I. C. & Le Quéré, C. Maximum impacts of future reforestation or deforestation on atmospheric CO2 . Glob. Change Biol. 8, 1047–1052 (2002).

    Article  Google Scholar 

  14. Prentice, I. C. et al. in IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 183–238 (Cambridge Univ. Press, 1990).

    Google Scholar 

  15. World Population Prospects: The 2010 Revision, Highlights and Advance Table Working Paper No. ESA/P/WP.220 (United Nations, 2011).

  16. World Energy Outlook 2006 (OECD/IEA, 2006).

  17. Keith, H., Mackey, B. & Lindenmayer, D. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).

    Article  CAS  Google Scholar 

  18. Carbon budget 2010 (Global Carbon Project, 2011); available at http://www.globalcarbonproject.org/carbonbudget/12/hl-full.htm

  19. Denman, K. L. & Brasseur, G. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. D. et al.) Ch. 7, 500–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  20. Friedlingstein, P., Dufresne, J. L., Cox, P. M. & Rayner, P. How positive is the feedback between climate change and the carbon cycle? Tellus B 55, 692–700 (2003).

    Article  Google Scholar 

  21. Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    Article  CAS  Google Scholar 

  22. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).

    Article  Google Scholar 

  23. Richard, J. et al. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  Google Scholar 

  24. Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    Article  CAS  Google Scholar 

  25. Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    Article  CAS  Google Scholar 

  26. Dean, C., Wardell-Johnson, G. & Kirkpatrick, J. B. Are there any circumstances in which logging primary wet-eucalypt forest will not add to the global carbon burden? Agric. For. Meteorol. 161, 156–169 (2012).

    Article  Google Scholar 

  27. Liao, C., Luo, Y., Fang, C. & Li, B. Ecosystem carbon stock influenced by plantation practice: Implications for planting forests as a measure of climate change mitigation. PLoS ONE 5, e10867 (2010).

    Article  Google Scholar 

  28. Danielsen, F. et al. Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. Conserv. Biol. 23, 348–358 (2009).

    Article  Google Scholar 

  29. Kanowski, J. & Catterall, C. P. Carbon stocks in above-ground biomass of monoculture plantations, mixed species plantations and environmental restoration plantings in north-east Australia. Ecol. Restor. Manag. 11, 119–126 (2011).

    Article  Google Scholar 

  30. Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems Technical Series No. 43 (Secretariat of the Convention on Biological Diversity, 2009).

    Google Scholar 

  31. Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (eds) IPCC: Climate Change and Water (IPCC Secretariat, 2008).

    Google Scholar 

  32. Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems Proc. Natl Acad. Sci. USA 35, 13116–13120 (2006).

    Article  Google Scholar 

  33. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate 19, 3337–3353 (2006).

    Article  Google Scholar 

  34. Report of the Conference of the Parties on its seventh session, held at Marrakesh from 29 October to 10 November 2000. Addendum Part Two: Action taken by the Conference of the Parties Volume I Annex C, Article 3, Paragraph 4 59 (UNFCCC 2000); available via http://go.nature.com/mmdUno

  35. Neeff, T., Heiner von Luepke, H. V. & Schoene, D. Choosing a Forest Definition for the Clean Development Mechanism Forests and Climate Change Working Paper 4 (FAO, 2006); available via http://go.nature.com/Kl6NQh

    Google Scholar 

  36. Sasaki, N. & Putz, F. E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).

    Article  Google Scholar 

  37. Sustainable Forest Management Appendix 2: Data Tables (Forestry Tasmania, 2012); available via http://go.nature.com/2ymgMY

  38. Harmon, M. E., Ferrell, W. K. & Franklin, J. F. Effects of carbon storage of conversion of old-growth forests to young forests. Science 247, 699–702 (1990).

    Article  CAS  Google Scholar 

  39. Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol on its Seventh Session, Held in Durban from 28 November to 11 December 2011 Addendum Part Two Annex A–E (UNFCCC, 2011); available via http://go.nature.com/A6gdR3

  40. Carbon Credits (Carbon Farming Initiative) Act 2011 (Australian Government, 2011); available via http://go.nature.com/n1exIb

  41. Coulter L., Canadell, P. & Dhakal, S. Carbon reductions and offsets Report No. 6 (Global Carbon Project, 2007); available via http://go.nature.com/A8zsz3

    Google Scholar 

  42. Denman, K. L. & Brasseur, G. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. D. et al.) 515 (Cambridge Univ. Press, 2007).

    Google Scholar 

  43. Olofsson, J. & Hickler, T. Effects of human land-use on the global carbon cycle during the last 6,000 years. Veget. Hist. Archaeobot. 17, 605–615 (2008).

    Article  Google Scholar 

  44. Plattner, G. K. et al. Long-term climate commitments projected with climate–carbon cycle models. J. Clim. 21, 2721–2751 (2008).

    Article  Google Scholar 

  45. Le Quéré, C. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  46. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data Discuss. 5, 1107–1157 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Clive Hilliker for technical assistance in finalizing the production of Fig. 1. We are also grateful for insightful comments from Pierre Friedlingstein on Fig. 1 calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Mackey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackey, B., Prentice, I., Steffen, W. et al. Untangling the confusion around land carbon science and climate change mitigation policy. Nature Clim Change 3, 552–557 (2013). https://doi.org/10.1038/nclimate1804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing