Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evidence and attribution of the enhanced land carbon sink

A Publisher Correction to this article was published on 07 November 2023

This article has been updated

Abstract

Climate change has been partially mitigated by an increasing net land carbon sink in the terrestrial biosphere; understanding the processes that drive this sink is thus essential for protecting, managing and projecting this important ecosystem service. In this Review, we examine evidence for an enhanced land carbon sink and attribute the observed response to drivers and processes. This sink has doubled from 1.2 ± 0.5 PgC yr−1 in the 1960s to 3.1 ± 0.6 PgC yr−1 in the 2010s. This trend results largely from carbon dioxide fertilization increasing photosynthesis (driving an increase in the annual land carbon sink of >2 PgC globally since 1900), mainly in tropical forest regions, and elevated temperatures reducing cold limitation, mainly at higher latitudes. Continued long-term land carbon sequestration is possible through the end of this century under multiple emissions scenarios, especially if nature-based climate solutions and appropriate ecosystem management are used. A new generation of globally distributed field experiments is needed to improve understanding of future carbon sink potential by measuring belowground carbon release, the response to carbon dioxide enrichment, and long-term shifts in carbon allocation and turnover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historic enhancement of the land carbon sink and effects on atmospheric CO2.
Fig. 2: Global changes in vegetation cover.
Fig. 3: Changes to the land carbon sink.
Fig. 4: Global and continental carbon flux responses over the twenty-first century.
Fig. 5: Spatial patterns in carbon flux responses to CO2 and climate change.
Fig. 6: Historical and future projections of the land carbon sink.
Fig. 7: Carbon emission mitigation potential on land.

Similar content being viewed by others

Data availability

Global Carbon Project data can be accessed at https://www.globalcarbonproject.org/carbonbudget/. Data for atmospheric inversion modelling (RECCAP-2) are available at https://climate.esa.int/en/projects/reccap-2. CMIP6 data are available at https://esgf-node.llnl.gov/projects/cmip6/. CRU temperature and precipitation data are available at https://crudata.uea.ac.uk/cru/data/hrg/.

Change history

References

  1. Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).

    Article  Google Scholar 

  2. Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article  Google Scholar 

  3. Crisp, D. et al. How well do we understand the land–ocean–atmosphere carbon cycle? Rev. Geophys. 60, e2021RG000736 (2022).

    Article  Google Scholar 

  4. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (IPCC, Cambridge Univ. Press, 2021).

  5. Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  6. Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosyst. 81, 169–178 (2008).

    Article  Google Scholar 

  7. Shevliakova, E. et al. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob. Biogeochem. Cycles 23, 003176 (2009).

    Article  Google Scholar 

  8. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article  Google Scholar 

  9. Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).

    Article  Google Scholar 

  10. Talhelm, A. F. et al. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob. Change Biol. 20, 2492–2504 (2014).

    Article  Google Scholar 

  11. Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article  Google Scholar 

  12. Nemani, R. et al. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophys. Res. Lett. 29, 014867 (2002).

    Article  Google Scholar 

  13. Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).

    Article  Google Scholar 

  14. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  Google Scholar 

  15. Yang, Y. et al. Post-drought decline of the Amazon carbon sink. Nat. Commun. 9, 3172 (2018).

    Article  Google Scholar 

  16. Zhang, Y. et al. Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850–2014. Earths Future 9, e2021EF002035 (2021).

    Article  Google Scholar 

  17. Schuur, Ea. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  18. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  19. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  20. Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon–climate feedback predictions. Sci. Rep. 7, 4765 (2017).

    Article  Google Scholar 

  21. Koven, C. D. et al. Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth Syst. Dyn. 13, 885–909 (2022).

    Article  Google Scholar 

  22. Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).

    Article  Google Scholar 

  23. Ciais, P., Tans, P. P., Trolier, M., White, J. W. C. & Francey, R. J. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269, 1098–1102 (1995).

    Article  Google Scholar 

  24. Raupach, M. R., Canadell, J. G. & Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5, 1601–1613 (2008).

    Article  Google Scholar 

  25. Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).

    Article  Google Scholar 

  26. Keeling, R. F. & Graven, H. D. Insights from time series of atmospheric carbon dioxide and related tracers. Annu. Rev. Environ. Resour. 46, 85–110 (2021).

    Article  Google Scholar 

  27. Tans, P. P., Fung, I. Y. & Takahashi, T. Observational contrains on the global atmospheric CO2 budget. Science 247, 1431–1438 (1990).

    Article  Google Scholar 

  28. Hauck, J. et al. Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Front. Mar. Sci. 7, 571720 (2020).

    Article  Google Scholar 

  29. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    Article  Google Scholar 

  30. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Article  Google Scholar 

  31. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  Google Scholar 

  32. Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

    Article  Google Scholar 

  33. Tharammal, T., Bala, G., Devaraju, N. & Nemani, R. A review of the major drivers of the terrestrial carbon uptake: model-based assessments, consensus, and uncertainties. Environ. Res. Lett. 14, 093005 (2019).

    Article  Google Scholar 

  34. Joos, F., Meyer, R., Bruno, M. & Leuenberger, M. The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys. Res. Lett. 26, 1437–1440 (1999).

    Article  Google Scholar 

  35. Gaubert, B. et al. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences 16, 117–134 (2019).

    Article  Google Scholar 

  36. Rayner, P. J. et al. Recent changes in the global and regional carbon cycle: analysis of first-order diagnostics. Biogeosciences 12, 835–844 (2015).

    Article  Google Scholar 

  37. van Marle, M. J. E. et al. New land-use-change emissions indicate a declining CO2 airborne fraction. Nature 603, 450–454 (2022).

    Article  Google Scholar 

  38. Keeling, R. F. et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1619240114 (2017).

    Article  Google Scholar 

  39. Keeling, C. D. et al. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems (eds Baldwin, I. T. et al.) 83–113 (Springer, 2005).

  40. Battle, M. et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287, 2467–2470 (2000).

    Article  Google Scholar 

  41. Battle, M. et al. Atmospheric potential oxygen: new observations and their implications for some atmospheric and oceanic models. Glob. Biogeochem. Cycles 20, 002534 (2006).

    Article  Google Scholar 

  42. Li, C. et al. Estimation of oceanic and land carbon sinks based on the most recent oxygen budget. Earths Future 9, e2021EF002124 (2021).

    Article  Google Scholar 

  43. Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    Article  Google Scholar 

  44. Peiro, H. et al. Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7. Atmos. Chem. Phys. 22, 1097–1130 (2022).

    Article  Google Scholar 

  45. Schimel, D. & Schneider, F. D. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).

    Article  Google Scholar 

  46. Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P. & Parazoo, N. C. Constraining estimates of terrestrial carbon uptake: new opportunities using long-term satellite observations and data assimilation. New Phytol. 225, 105–112 (2020).

    Article  Google Scholar 

  47. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  Google Scholar 

  48. Mao, J. et al. Human-induced greening of the northern extratropical land surface. Nat. Clim. Change 6, 959–963 (2016).

    Article  Google Scholar 

  49. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  50. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  51. Cortés, J. et al. Where are global vegetation greening and browning trends significant? Geophys. Res. Lett. 48, e2020GL091496 (2021).

    Article  Google Scholar 

  52. Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4–10 (2019).

    Google Scholar 

  53. Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    Article  Google Scholar 

  54. Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change https://doi.org/10.1038/nclimate2581 (2015).

    Article  Google Scholar 

  55. Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).

    Article  Google Scholar 

  56. Zhang, Y. et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 187, 145–155 (2016).

    Article  Google Scholar 

  57. Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24, 3990–4008 (2018).

    Article  Google Scholar 

  58. Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 3, 477–493 (2022).

    Article  Google Scholar 

  59. Zhang, Y., Joiner, J., Hamed Alemohammad, S., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article  Google Scholar 

  60. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article  Google Scholar 

  61. Asaf, D. et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci. 6, 186–190 (2013).

    Article  Google Scholar 

  62. Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    Article  Google Scholar 

  63. Magney, A. T. S., Barnes, M. L. & Yang, X. On the co-variation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. https://doi.org/10.1029/2020GL091098 (2020).

    Article  Google Scholar 

  64. Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).

    Article  Google Scholar 

  65. Liu, Y. et al. Non-linearity between gross primary productivity and far-red solar-induced chlorophyll fluorescence emitted from canopies of major biomes. Remote Sens. Environ. 271, 112896 (2022).

    Article  Google Scholar 

  66. Whelan, M. E. et al. Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 15, 3625–3657 (2018).

    Article  Google Scholar 

  67. He, L., Byrne, B., Yin, Y., Liu, J. & Frankenberg, C. Remote-sensing derived trends in gross primary production explain increases in the CO2 seasonal cycle amplitude. Glob. Biogeochem. Cycles 36, e2021GB007220 (2022).

    Article  Google Scholar 

  68. Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).

    Article  Google Scholar 

  69. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  Google Scholar 

  70. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  71. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  72. Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).

    Article  Google Scholar 

  73. Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).

    Article  Google Scholar 

  74. Tagesson, T. et al. A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades. Glob. Change Biol. 27, 836–854 (2021).

    Article  Google Scholar 

  75. Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    Article  Google Scholar 

  76. Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article  Google Scholar 

  77. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  Google Scholar 

  78. Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    Article  Google Scholar 

  79. Salzer, M. W., Hughes, M. K., Bunn, A. G. & Kipfmueller, K. F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl Acad. Sci. USA 106, 20348–20353 (2009).

    Article  Google Scholar 

  80. McMahon, S. M., Parker, G. G. & Miller, D. R. Evidence for a recent increase in forest growth. Proc. Natl Acad. Sci. USA 107, 3611–3615 (2010).

    Article  Google Scholar 

  81. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  82. Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    Article  Google Scholar 

  83. Davis, E. C., Sohngen, B. & Lewis, D. J. The effect of carbon fertilization on naturally regenerated and planted US forests. Nat. Commun. 13, 5490 (2022).

    Article  Google Scholar 

  84. Cole, C. T., Anderson, J. E., Lindroth, R. L. & Waller, D. M. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Glob. Change Biol. 16, 2186–2197 (2010).

    Article  Google Scholar 

  85. Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).

    Article  Google Scholar 

  86. van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    Article  Google Scholar 

  87. Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).

    Article  Google Scholar 

  88. Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, 003699 (2010).

    Article  Google Scholar 

  89. D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60, 289–305 (2008).

    Article  Google Scholar 

  90. Stine, A. R. & Huybers, P. Arctic tree rings as recorders of variations in light availability. Nat. Commun. 5, 3836 (2014).

    Article  Google Scholar 

  91. Guerrieri, R. et al. Climate and atmospheric deposition effects on forest water-use efficiency and nitrogen availability across Britain. Sci. Rep. 10, 12418 (2020).

    Article  Google Scholar 

  92. Schippers, P., Sterck, F., Vlam, M. & Zuidema, P. A. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2. Glob. Change Biol. 21, 2749–2761 (2015).

    Article  Google Scholar 

  93. Levesque, M. et al. Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale. Nat. Commun. 10, 742 (2019).

    Article  Google Scholar 

  94. Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).

    Article  Google Scholar 

  95. Baldocchi, D. D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Change Biol. 26, 242–260 (2020).

    Article  Google Scholar 

  96. Burba, G. Illustrative maps of past and present eddy covariance measurement locations: II. High-resolution images. Res. Gate https://doi.org/10.13140/RG.2.2.33191.70561 (2019).

    Article  Google Scholar 

  97. Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).

    Article  Google Scholar 

  98. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  Google Scholar 

  99. Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Change Biol. 17, 886–897 (2011).

    Article  Google Scholar 

  100. Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P. & Jensen, N. O. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agric. For. Meteorol. 151, 934–946 (2011).

    Article  Google Scholar 

  101. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  Google Scholar 

  102. Fernández-Martínez, M. et al. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632 (2017).

    Article  Google Scholar 

  103. Cai, W. & Prentice, I. C. Recent trends in gross primary production and their drivers: analysis and modelling at flux-site and global scales. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc64e (2020).

    Article  Google Scholar 

  104. Chen, C., Riley, W. J., Prentice, I. C. & Keenan, T. F. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

    Article  Google Scholar 

  105. Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article  Google Scholar 

  106. Forkel, M. et al. Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sens. 5, 2113–2144 (2013).

    Article  Google Scholar 

  107. Jiang, C. et al. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).

    Article  Google Scholar 

  108. de Jong, R., Verbesselt, J., Schaepman, M. E. & de Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

    Article  Google Scholar 

  109. Liu, X. et al. European carbon uptake has not benefited from vegetation greening. Geophys. Res. Lett. 48, e2021GL094870 (2021).

    Article  Google Scholar 

  110. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article  Google Scholar 

  111. Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).

    Article  Google Scholar 

  112. Green, J. K. & Keenan, T. F. The limits of forest carbon sequestration. Science 376, 692–693 (2022).

    Article  Google Scholar 

  113. Villarreal, S. & Vargas, R. Representativeness of FLUXNET sites across Latin America. J. Geophys. Res. Biogeosci. 126, e2020JG006090 (2021).

    Article  Google Scholar 

  114. Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).

    Article  Google Scholar 

  115. Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article  Google Scholar 

  116. Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article  Google Scholar 

  117. Field, C. B., Jackson, R. B. & Mooney, H. A. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18, 1214–1225 (1995).

    Article  Google Scholar 

  118. Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011).

    Article  Google Scholar 

  119. Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).

    Article  Google Scholar 

  120. Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).

    Article  Google Scholar 

  121. Mathias, J. M. & Thomas, R. B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc. Natl Acad. Sci. USA 118, e2014286118 (2021).

    Article  Google Scholar 

  122. Guo, Y. et al. Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth. Nat. Ecol. Evol. 6, 1271–1278 (2022).

    Article  Google Scholar 

  123. Battipaglia, G. et al. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 197, 544–554 (2013).

    Article  Google Scholar 

  124. Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).

    Article  Google Scholar 

  125. Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).

    Article  Google Scholar 

  126. Liu, Y. et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 12, 809–814 (2019).

    Article  Google Scholar 

  127. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  Google Scholar 

  128. Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).

    Article  Google Scholar 

  129. Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Article  Google Scholar 

  130. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article  Google Scholar 

  131. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article  Google Scholar 

  132. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).

    Article  Google Scholar 

  133. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  Google Scholar 

  134. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  Google Scholar 

  135. Newingham, B. A. et al. No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob. Change Biol. 19, 2168–2181 (2013).

    Article  Google Scholar 

  136. Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. & Linder, S. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol. 33, 1192–1205 (2013).

    Article  Google Scholar 

  137. Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    Article  Google Scholar 

  138. Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: indication for a CO2 fertilization effect in global vegetation. Glob. Biogeochem. Cycles 27, 318–330 (2013).

    Article  Google Scholar 

  139. Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).

    Article  Google Scholar 

  140. Zhan, C. et al. Emergence of the physiological effects of elevated CO2 on land–atmosphere exchange of carbon and water. Glob. Change Biol. 28, 7313–7326 (2022).

    Article  Google Scholar 

  141. Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    Article  Google Scholar 

  142. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article  Google Scholar 

  143. Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).

    Article  Google Scholar 

  144. Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    Article  Google Scholar 

  145. Zhou, G. et al. Nitrogen and water availability control plant carbon storage with warming. Sci. Total Environ. 851, 158243 (2022).

    Article  Google Scholar 

  146. Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    Article  Google Scholar 

  147. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Article  Google Scholar 

  148. Xu, X. et al. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data. J. Environ. Manage. 246, 605–616 (2019).

    Article  Google Scholar 

  149. Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).

    Article  Google Scholar 

  150. Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    Article  Google Scholar 

  151. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    Article  Google Scholar 

  152. Schuur, E. A. G. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84, 1165–1170 (2003).

    Article  Google Scholar 

  153. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  Google Scholar 

  154. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 116, 1566 (2011).

    Article  Google Scholar 

  155. Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  Google Scholar 

  156. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  157. Wang, K. et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nat. Commun. 13, 3469 (2022).

    Article  Google Scholar 

  158. Sheffield, J. & Wood, E. F. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 21, 432–458 (2008).

    Article  Google Scholar 

  159. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  Google Scholar 

  160. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. https://doi.org/10.1126/sciadv.aax1396 (2019).

  161. Poulter, B. et al. Contribution of sem-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  Google Scholar 

  162. Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2–plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).

    Article  Google Scholar 

  163. Schwalm, C. R., Williams, C. A. & Schaefer, K. Carbon consequences of global hydrologic change, 1948–2009. J. Geophys. Res. Biogeosci. 116, 1674 (2011).

    Article  Google Scholar 

  164. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    Article  Google Scholar 

  165. Karnauskas, K. B., Donnelly, J. P. & Anchukaitis, K. J. Future freshwater stress for island populations. Nat. Clim. Change 6, 720–725 (2016).

    Article  Google Scholar 

  166. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  Google Scholar 

  167. Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

    Article  Google Scholar 

  168. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  169. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  170. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article  Google Scholar 

  171. Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article  Google Scholar 

  172. Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).

    Article  Google Scholar 

  173. Denissen, J. M. C. et al. Widespread shift from ecosystem energy to water limitation with climate change. Nat. Clim. Change 12, 677–684 (2022).

    Article  Google Scholar 

  174. Li, W. et al. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 13, 3959 (2022).

    Article  Google Scholar 

  175. Zhang, Y. et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 13, 4875 (2022).

    Article  Google Scholar 

  176. Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).

    Article  Google Scholar 

  177. Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    Article  Google Scholar 

  178. Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    Article  Google Scholar 

  179. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  180. Rastetter, E. B. et al. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol. 9, 101–126 (1991).

    Article  Google Scholar 

  181. Zaehle, S. et al. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Glob. Biogeochem. Cycles 24, 3522 (2010).

    Article  Google Scholar 

  182. Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, 2868 (2007).

    Article  Google Scholar 

  183. Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article  Google Scholar 

  184. Lukac, M., Calfapietra, C., Lagomarsino, A. & Loreto, F. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol. 30, 1209–1220 (2010).

    Article  Google Scholar 

  185. Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    Article  Google Scholar 

  186. Fleischer, K. & Terrer, C. Estimates of soil nutrient limitation on the CO2 fertilization effect for tropical vegetation. Glob. Change Biol. 28, 6366–6369 (2022).

    Article  Google Scholar 

  187. Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).

    Article  Google Scholar 

  188. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Article  Google Scholar 

  189. O’Sullivan, M. et al. Aerosol–light interactions reduce the carbon budget imbalance. Environ. Res. Lett. 16, 124072 (2021).

    Article  Google Scholar 

  190. Zhang, Y. et al. Increased global land carbon sink due to aerosol‐induced cooling. Glob. Biogeochem. Cycles 33, 439–457 (2019).

    Article  Google Scholar 

  191. Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Article  Google Scholar 

  192. Nave, L. E., Swanston, C. W., Mishra, U. & Nadelhoffer, K. J. Afforestation effects on soil carbon storage in the United States: a synthesis. Soil. Sci. Soc. Am. J. 77, 1035–1047 (2013).

    Article  Google Scholar 

  193. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  194. Lesk, C., Coffel, E., D’Amato, A. W., Dodds, K. & Horton, R. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7, 713–717 (2017).

    Article  Google Scholar 

  195. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

    Article  Google Scholar 

  196. Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 3170 (2020).

    Article  Google Scholar 

  197. Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).

    Article  Google Scholar 

  198. Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Phil. Trans. R. Soc. B 371, 20150345 (2016).

    Article  Google Scholar 

  199. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  Google Scholar 

  200. Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).

    Article  Google Scholar 

  201. Houghton, R. A., Hackler, J. L. & Lawrence, K. T. The US carbon budget: contributions from land-use change. Science 285, 574–578 (1999).

    Article  Google Scholar 

  202. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  203. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Article  Google Scholar 

  204. Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    Article  Google Scholar 

  205. Phillips, C. A. et al. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8, eabl7161 (2022).

    Article  Google Scholar 

  206. Fan, L. et al. Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16, 56–62 (2023).

    Article  Google Scholar 

  207. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  Google Scholar 

  208. van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597, 366–369 (2021).

    Article  Google Scholar 

  209. Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).

    Article  Google Scholar 

  210. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  211. Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    Article  Google Scholar 

  212. Seidl, R. et al. Modelling natural disturbances in forest ecosystems: a review. Ecol. Model. 222, 903–924 (2011).

    Article  Google Scholar 

  213. Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).

    Article  Google Scholar 

  214. Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Article  Google Scholar 

  215. Groenigen, K. Jvan et al. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob. Change Biol. 23, 4420–4429 (2017).

    Article  Google Scholar 

  216. Meeran, K. et al. Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. Glob. Change Biol. 27, 3230–3243 (2021).

    Article  Google Scholar 

  217. Wu, D. et al. Accelerated terrestrial ecosystem carbon turnover and its drivers. Glob. Change Biol. 26, 5052–5062 (2020).

    Article  Google Scholar 

  218. Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731–739 (2004).

    Article  Google Scholar 

  219. Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).

    Article  Google Scholar 

  220. Wang, Y. P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    Article  Google Scholar 

  221. Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).

    Article  Google Scholar 

  222. Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article  Google Scholar 

  223. Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507–522 (2018).

    Article  Google Scholar 

  224. Thomas, R. Q. et al. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2009).

    Article  Google Scholar 

  225. Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).

    Article  Google Scholar 

  226. Piao, S. et al. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob. Change Biol. 24, 608–616 (2018).

    Article  Google Scholar 

  227. Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2015).

    Article  Google Scholar 

  228. Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 10, 175–177 (2020).

    Article  Google Scholar 

  229. Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 221, 652–668 (2019).

    Article  Google Scholar 

  230. Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).

    Article  Google Scholar 

  231. McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010).

    Article  Google Scholar 

  232. Dukes, J. S. et al. Responses of grassland production to single and multiple global environmental changes. PLoS Biol. 3, e319 (2005).

    Article  Google Scholar 

  233. Adair, E. C., Reich, P. B., Hobbie, S. E. & Knops, J. M. H. Interactive effects of time, CO2, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12, 1037–1052 (2009).

    Article  Google Scholar 

  234. Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).

    Article  Google Scholar 

  235. He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

    Article  Google Scholar 

  236. Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).

    Article  Google Scholar 

  237. van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).

    Article  Google Scholar 

  238. Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article  Google Scholar 

  239. Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    Article  Google Scholar 

  240. Mercado, L. M. et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol. 218, 1462–1477 (2018).

    Article  Google Scholar 

  241. Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    Article  Google Scholar 

  242. Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    Article  Google Scholar 

  243. Sheffield, J., Andreadis, K. M., Wood, E. F. & Lettenmaier, D. P. Global and continental drought in the second half of the twentieth century: severity–area–duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).

    Article  Google Scholar 

  244. Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  Google Scholar 

  245. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  246. Kannenberg, S. A., Schwalm, C. R. & Anderegg, W. R. L. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol. Lett. 23, 891–901 (2020).

    Article  Google Scholar 

  247. Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).

    Article  Google Scholar 

  248. Cook, B. I. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  249. Cook, B. I. et al. Megadroughts in the common era and the anthropocene. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00329-1 (2022).

    Article  Google Scholar 

  250. Milly, P. C. D. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).

    Article  Google Scholar 

  251. Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  Google Scholar 

  252. Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  253. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    Article  Google Scholar 

  254. Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article  Google Scholar 

  255. Zhou, S. et al. Large divergence in tropical hydrological projections caused by model spread in vegetation responses to elevated CO2. Earths Future 10, e2021EF002457 (2022).

    Article  Google Scholar 

  256. Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article  Google Scholar 

  257. Roelfsema, M. et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 11, 2096 (2020).

    Article  Google Scholar 

  258. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  Google Scholar 

  259. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article  Google Scholar 

  260. Roe, S. et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).

    Article  Google Scholar 

  261. Novick, K. et al. The Science Needed for Robust, Scalable, and Credible Nature-based Climate Solutions in the United States: Full Report (Indiana Univ., 2022); https://doi.org/10.5967/n7r9-7j83.

  262. Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

    Article  Google Scholar 

  263. Williams, C. A., Gu, H. & Jiao, T. Climate impacts of U.S. forest loss span net warming to net cooling. Sci. Adv. 7, eaax8859 (2021).

    Article  Google Scholar 

  264. Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    Article  Google Scholar 

  265. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article  Google Scholar 

  266. Chomba, S., Kariuki, J., Lund, J. F. & Sinclair, F. Roots of inequity: how the implementation of REDD+ reinforces past injustices. Land Use Policy 50, 202–213 (2016).

    Article  Google Scholar 

  267. Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 98, 20–29 (2019).

    Article  Google Scholar 

  268. Bahn, M., Reichstein, M., Dukes, J. S., Smith, M. D. & McDowell, N. G. Climate–biosphere interactions in a more extreme world. New Phytol. 202, 356–359 (2014).

    Article  Google Scholar 

  269. Chen, J. et al. Long‐term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086 (2020).

    Article  Google Scholar 

  270. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  271. Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).

    Article  Google Scholar 

  272. Weng, E. S. et al. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12, 2655–2694 (2015).

    Article  Google Scholar 

  273. Prentice, I. C., Liang, X., Medlyn, B. E. & Wang, Y.-P. Reliable, robust and realistic: the three R’s of next-generation land-surface modelling. Atmos. Chem. Phys. 15, 5987–6005 (2015).

    Article  Google Scholar 

  274. Collier, N. et al. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).

    Article  Google Scholar 

  275. Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model. Earth Syst. 14, 2946 (2022).

    Article  Google Scholar 

  276. Peylin, P. et al. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. Geosci. Model. Dev. 9, 3321–3346 (2016).

    Article  Google Scholar 

  277. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

    Article  Google Scholar 

  278. Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).

    Article  Google Scholar 

  279. Norby, R. J. et al. Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    Article  Google Scholar 

  280. Ciais, P. et al. Definitions and methods to estimate regional land carbon fluxes for the second phase of the Regional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geosci. Model. Dev. 15, 1289–1316 (2022).

    Article  Google Scholar 

  281. Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model. Dev. 10, 2057–2116 (2017).

    Article  Google Scholar 

  282. Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54, 5301–5318 (2016).

    Article  Google Scholar 

  283. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2. Remote. Sens. 5, 927–948 (2013).

    Article  Google Scholar 

  284. Claverie, M., Matthews, J. L., Vermote, E. F. & Justice, C. O. A 30+ year AVHRR LAI and FAPAR climate data record: algorithm description and validation. Remote Sens. 8, 1–12 (2016).

    Article  Google Scholar 

  285. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  286. Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 4, 601–605 (2011).

    Article  Google Scholar 

  287. Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Article  Google Scholar 

  288. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  289. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

S.R. acknowledges support from NASA FINESST grant No. 80NSSC22K1448 and 80NSSC20K1801. T.F.K. acknowledges support from NASA awards 80NSSC21K1705 and 80NSSC20K1801, the RUBISCO SFA, which is sponsored by the Regional and Global Model Analysis (RGMA) Program in the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy (DOE) Office of Science, and a DOE Early Career Research Program award #DE-SC0021023. T.K.F. and I.C.P. acknowledge funding from the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt through the Schmidt Futures programme. I.C.P. also acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No: 787203 REALM). X.L. acknowledges funding from NASA FINESST #80NSSC21K1602. J.G.C. thanks the support of the Australian National Environmental Science Program — Climate Systems Hub. A.B. was funded by the European Union (ERC StG, ForExD, grant agreement no. 101039567). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the ERC; neither the European Union nor the granting authority can be held responsible. C.A.W. acknowledges support from NASA Carbon Monitoring System grants NNX16AQ25G and NN14AR39G, and C.A.W. and Y.Z. acknowledge support from NASA EVS-2 ACT-America grant NNX16AN17G. Y.Z. acknowledges partial support from the NSF for Long-Term Ecological Research (DEB 1655499) and support from Schmidt Future via the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship to Cornell University. We thank the TRENDY model teams for providing output from scenario simulations.

Author information

Authors and Affiliations

Authors

Contributions

T.F.K. and C.W. conceived of the review and wrote the first draft. S.R. developed the manuscript with input from T.F.K. and C.W. S.R. generated the figures. Y.Z. and X.L. contributed figure data. A.B., J.G.C., I.C.P., S.S. and C.T. contributed to writing and made substantial contributions to the discussion of content.

Corresponding authors

Correspondence to Sophie Ruehr or Trevor F. Keenan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Mark Adams, Xu Lian and Torbern Tagesson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Airborne fraction

The long-term fate of anthropogenic CO2 emissions that remain in the atmosphere (not taken up by the land or oceanic sinks).

Carbon fluxes

The quantity of carbon exchanged between carbon stocks (on land or in the ocean) and the atmosphere over a specific area and time period. Here, carbon flux is positive when uptake occurs in the land or ocean carbon sinks.

CO2 atmospheric growth rate

The difference in atmospheric CO2 concentration between the start and end of each year, representing the sum of all CO2 fluxes into and out of the atmosphere by both natural and human processes.

CO2 fertilization

The stimulation of both photosynthetic light and water-use efficiency by rising atmospheric CO2 concentrations, the response to which can be an increase in photosynthesis and/or a decrease in leaf-level water use.

Land carbon sink

This term is used when applicable to both the net and natural land carbon sinks.

Natural land carbon sink

Net carbon sequestered by terrestrial ecosystems independent of direct anthropogenic interventions such as land use and land-use change (or net primary productivity minus heterotrophic respiration and other natural carbon losses to the atmosphere such as fire, volatile organic compounds and others).

Net biome productivity

Net ecosystem exchange over a large spatial and temporal extent, including disturbance and management effects.

Net ecosystem exchange

Gross primary productivity minus ecosystem respiration. This quantity can be positive or negative.

Net land carbon sink

The balance of carbon leaving and entering the terrestrial biosphere through all pathways.

Residual land sink

The calculated global land carbon sink after accounting for atmospheric growth rate, ocean sink and emissions from land-use change.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruehr, S., Keenan, T.F., Williams, C. et al. Evidence and attribution of the enhanced land carbon sink. Nat Rev Earth Environ 4, 518–534 (2023). https://doi.org/10.1038/s43017-023-00456-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00456-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing