Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interdecadal modulation of El Niño amplitude during the past millennium

Abstract

The El Niño/Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) conditions in the tropical Pacific at intervals of 2–8 years1,2. The amplitude of ENSO variability affects the occurrence and predictability of climate extremes around the world3,4, but our ability to detect and predict changes in ENSO amplitude is limited by the fact that the instrumental record is too short to characterize its natural variability5,6,7,8. Here we use the North American Drought Atlas9,10—a database of drought reconstructions based on tree-ring records—to produce a continuous, annually resolved record of ENSO variability over the past 1,100 years. Our record is in broad agreement with independent, ENSO-sensitive proxy records in the Pacific and surrounding regions. Together, these records indicate that ENSO amplitude exhibits a quasi-regular cycle of 50–90 years that is closely coupled to the tropical Pacific mean state. Anomalously warm conditions in the eastern Pacific are associated with enhanced ENSO variability, consistent with model simulations11. The quasi-periodic ENSO amplitude modulation reported here offers a key observational constraint for improving models and their prediction of ENSO behaviour linked to global warming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The leading EOF pattern of NADA, its PC series and correlation of the PC series with tropical records.
Figure 2: Comparison of records of ENSO variance.
Figure 3: Spectral property of the NADA-derived ENSO variance series.
Figure 4: Comparison of the NADA-derived ENSO variance series with records of the tropical Pacific mean state.

Similar content being viewed by others

References

  1. Deser, C., Alexander, M. A., Xie, S-P. & Phillips, A. S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  2. D'Arrigo, R., Cook, E. R., Wilson, R. J., Allan, R. & Mann, M. E. On the variability of ENSO over the past six centuries. Geophys. Res. Lett. 32, L03711 (2005).

    Google Scholar 

  3. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article  CAS  Google Scholar 

  4. Tang, Y., Deng, Z., Zhou, X., Cheng, Y. & Chen, D. Interdecadal variation of ENSO predictability in multiple models. J. Clim. 21, 4811–4833 (2008).

    Article  Google Scholar 

  5. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Article  CAS  Google Scholar 

  6. Yeh, S. W. & Kirtman, B. P. ENSO amplitude changes due to climate change projections in different coupled models. J. Clim. 20, 203–217 (2007).

    Article  Google Scholar 

  7. Guilyardi, E. et al. Understanding El Niño in ocean–atmosphere general circulation Models: Progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).

    Article  Google Scholar 

  8. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  9. Cook, E. R., Woodhouse, C., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    Article  CAS  Google Scholar 

  10. Cook, E. R. et al. North American Summer PDSI Reconstructions, Version 2a. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2008-046 (NOAA, NGDC Paleoclimatology Program, 2008).

  11. Choi, J., An, S-I., DeWitte, B. & Hsieh, W.W. Interactive feedback between the tropical Pacific Decadal Oscillation and ENSO in a coupled general circulation model. J. Clim. 22, 6597–6611 (2009).

    Article  Google Scholar 

  12. Dunbar, R. B., Wellington, G. M., Colgan, M. W. & Glymn, P. W. Eastern Pacific sea surface temperature since 1600 AD: The δ18O record of climate variability in Galápagos coral. Paleoceanography 9, 291–315 (1994).

    Article  Google Scholar 

  13. Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    Article  CAS  Google Scholar 

  14. Conroy, J. L. et al. Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nature Geosci. 2, 46–50 (2009).

    Article  CAS  Google Scholar 

  15. Seager, R., Kushnir, Y., Herweijer, C., Naik, N. & Velez, J. Modelling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Clim. 18, 4068–4091 (2005).

    Article  Google Scholar 

  16. Cook, E. R., Seager, R., Cane, M. A. & Stahle, D. W. North American droughts: Reconstructions, causes and consequences. Earth Sci. Rev. 81, 93–134 (2007).

    Article  Google Scholar 

  17. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  18. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  19. Zhang, Y., Wallace, J. & Battisti, D. ENSO-like decade-to-century scale variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    Article  Google Scholar 

  20. Lanzante, J. R. Resistant, robust & non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol. 16, 1197–1226 (1996).

    Article  Google Scholar 

  21. Mann, M. E. & Lees, J. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33, 409–445 (1996).

    Article  Google Scholar 

  22. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  23. LaMarche, V. C. Jr., Holmes, R. L., Dunwiddie, P. W. & Drew, L. G. Tree-ring chronologies of the southern hemisphere: Chile. Lab. Tree-Ring Res. Chronol. Ser. 2, 1–43 (1979).

    Google Scholar 

  24. Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    Article  CAS  Google Scholar 

  25. Fedorov, A. V. & Philander, S. G. A stability analysis of the tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Clim. 14, 3086–3101 (2001).

    Article  Google Scholar 

  26. Hodell, D. A. et al. Climate change on the Yucatan Peninsula during the Little Ice Age. Quat. Res. 63, 109–121 (2005).

    Article  Google Scholar 

  27. Nelson, D. B. et al. Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record. Proc. Natl Acad. Sci. USA 10.1073/pnas.1009194108 (2011).

  28. Burgman, R. J., Schopf, P. & Kirtman, B. P. Decadal modulation of ENSO in a hybrid coupled model. J. Clim. 21, 5482–5500 (2008).

    Article  Google Scholar 

  29. Mann, M. E., Cane, M. A., Zebiak, S. E. & Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1,000 years. J. Clim. 18, 447–456 (2005).

    Article  Google Scholar 

  30. Duchon, C. E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18, 1016–1022 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the researchers who have contributed their tree-ring data for NADA development. This research was funded by the National Science Foundation, the National Oceanic and Atmospheric Administration, the Japan Agency for Marine-Earth Science and Technology, the National Basic Research Program of China (2011CB309704), and the National Science Foundation of China (No.40890155). This is a International Pacific Research Center/School of Ocean and Earth Science and Technology Contribution (774/8128) and a Lamont–Doherty Earth Observatory Contribution (7462).

Author information

Authors and Affiliations

Authors

Contributions

J.L., S-P.X. and E.R.C. contributed to data analysis. J.L., S-P.X., E.R.C., G.H., and R.D. contributed to writing the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jinbao Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xie, SP., Cook, E. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nature Clim Change 1, 114–118 (2011). https://doi.org/10.1038/nclimate1086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing