Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling

Abstract

Oxysterols bind the seven-transmembrane protein Smo (Smo) and potently activate vertebrate Hedgehog (Hh) signaling, a pathway essential in embryonic development, adult stem cell maintenance and cancer. It is unknown, however, whether oxysterols are important for normal vertebrate Hh signaling and whether antagonizing oxysterols can inhibit the Hh pathway. We developed azasterols that block Hh signaling by binding the oxysterol-binding site of Smo. We show that the binding site for oxysterols and azasterols maps to the extracellular, cysteine-rich domain of Smo and is completely separable from the site bound by other small-molecule modulators, located within the heptahelical bundle of Smo. Smo mutants in which oxysterol binding is abolished no longer respond to oxysterols and cannot be maximally activated by the Hh ligand. Our results show that oxysterol binding to vertebrate Smo is required for normal Hh signaling and that targeting the oxysterol-binding site is an effective strategy to inhibit Smo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 22-NHC inhibits vertebrate Hh signaling.
Figure 2: 22-NHC binds Smo at the oxysterol-binding site.
Figure 3: Oxysterols and 22-NHC bind the extracellular CRD of vertebrate Smo.
Figure 4: Structural requirements for oxysterol activation of Smo.
Figure 5: Oxysterol binding to Smo is required for high Hh signaling.
Figure 6: Conserved and divergent aspects of Smo signaling.

Similar content being viewed by others

References

  1. Lum, L. & Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  Google Scholar 

  2. Ingham, P.W. & McMahon, A.P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  Google Scholar 

  3. Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    Article  CAS  Google Scholar 

  4. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  Google Scholar 

  5. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  Google Scholar 

  6. Robarge, K.D. et al. GDC-0449—a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 19, 5576–5581 (2009).

    Article  CAS  Google Scholar 

  7. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  8. Sinha, S. & Chen, J.K. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29–30 (2006).

    Article  CAS  Google Scholar 

  9. Dwyer, J.R. et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282, 8959–8968 (2007).

    Article  CAS  Google Scholar 

  10. Corcoran, R.B. & Scott, M.P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. USA 103, 8408–8413 (2006).

    Article  CAS  Google Scholar 

  11. Kim, W.K., Meliton, V., Amantea, C.M., Hahn, T.J. & Parhami, F. 20(S)-hydroxycholesterol inhibits PPARγ expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J. Bone Miner. Res. 22, 1711–1719 (2007).

    Article  CAS  Google Scholar 

  12. Nachtergaele, S. et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012).

    Article  CAS  Google Scholar 

  13. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  Google Scholar 

  14. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  Google Scholar 

  15. Svärd, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell 10, 187–197 (2006); erratum 10, 409.

    Article  Google Scholar 

  16. Cooper, M.K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33, 508–513 (2003).

    Article  CAS  Google Scholar 

  17. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  Google Scholar 

  18. Wang, Y., Zhou, Z., Walsh, C.T. & McMahon, A.P. Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc. Natl. Acad. Sci. USA 106, 2623–2628 (2009).

    Article  CAS  Google Scholar 

  19. Rohatgi, R., Milenkovic, L., Corcoran, R.B. & Scott, M.P. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. USA 106, 3196–3201 (2009).

    Article  CAS  Google Scholar 

  20. Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    Article  CAS  Google Scholar 

  21. Bazan, J.F. & de Sauvage, F.J. Structural ties between cholesterol transport and morphogen signaling. Cell 138, 1055–1056 (2009).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Glucocorticoid compounds modify smoothened localization and hedgehog pathway activity. Chem. Biol. 19, 972–982 (2012).

    Article  CAS  Google Scholar 

  23. Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. & Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    Article  CAS  Google Scholar 

  24. Dorn, K.V., Hughes, C.E. & Rohatgi, R.A. Smoothened–Evc2 complex transduces the Hedgehog signal at primary cilia. Dev. Cell 23, 823–835 (2012).

    Article  CAS  Google Scholar 

  25. Infante, R.E. et al. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J. Biol. Chem. 283, 1064–1075 (2008).

    Article  CAS  Google Scholar 

  26. Motamed, M. et al. Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J. Biol. Chem. 286, 18002–18012 (2011).

    Article  CAS  Google Scholar 

  27. Nakano, Y. et al. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech. Dev. 121, 507–518 (2004).

    Article  CAS  Google Scholar 

  28. Aanstad, P. et al. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr. Biol. 19, 1034–1039 (2009).

    Article  CAS  Google Scholar 

  29. Tukachinsky, H., Lopez, L. & Salic, A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu–Gli protein complexes. J. Cell Biol. 191, 415–428 (2010).

    Article  CAS  Google Scholar 

  30. Tukachinsky, H., Kuzmickas, R.P., Jao, C.Y., Liu, J. & Salic, A. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2, 308–320 (2012).

    Article  CAS  Google Scholar 

  31. Klein, U., Gimpl, G. & Fahrenholz, F. Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kishi and members of his laboratory for help with chiral chromatography and R. Rohatgi (Stanford University) for the initial gift of 20-OHC beads. A.S. is supported in part by US National Institutes of Health grant RO1 GM092924.

Author information

Authors and Affiliations

Authors

Contributions

D.N. and A.S. performed cellular and biochemical experiments. J.L., C.J. and A.S. designed and synthesized reported compounds. J.L. purified and characterized the compounds. Y.X. and D.N. developed automated image analysis software, and D.N. analyzed imaging data. All authors contributed data to the manuscript. A.S. wrote the manuscript, with input from all other authors.

Corresponding author

Correspondence to Adrian Salic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12, and Supplementary Note. (PDF 9872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedelcu, D., Liu, J., Xu, Y. et al. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat Chem Biol 9, 557–564 (2013). https://doi.org/10.1038/nchembio.1290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1290

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research