Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction

Abstract

The Wnt/β-catenin signaling pathway has a crucial role in embryonic development, stem cell maintenance and human disease. By screening a synthetic chemical library of lycorine derivatives, we identified 4-ethyl-5-methyl-5,6-dihydro-[1,3]dioxolo[4,5-j]phenanthridine (HLY78) as an activator of the Wnt/β-catenin signaling pathway, which acts in a Wnt ligand–dependent manner. HLY78 targets the DIX domain of Axin and potentiates the Axin–LRP6 association, thus promoting LRP6 phosphorylation and Wnt signaling transduction. Moreover, we identified the critical residues on Axin for HLY78 binding and showed that HLY78 may weaken the autoinhibition of Axin. In addition, HLY78 acts synergistically with Wnt in the embryonic development of zebrafish and increases the expression of the conserved hematopoietic stem cell (HSC) markers, runx1 and cmyb, in zebrafish embryos. Collectively, our study not only provides new insights into the regulation of the Wnt/β-catenin signaling pathway by a Wnt-specific small molecule but also will facilitate therapeutic applications, such as HSC expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HLY78 activates Wnt signaling upstream of β-catenin.
Figure 2: HLY78 targets the Axin protein.
Figure 3: HLY78 directly binds the DAX domain of Axin.
Figure 4: HLY78 potentiates the Axin–LRP6 interaction.
Figure 5: HLY78 inhibits the interaction between Axin-ΔN2 and Axin-N2.
Figure 6: HLY78 activates Wnt signaling in vivo.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Zimmerman, Z.F., Moon, R.T. & Chien, A.J. Targeting Wnt pathways in disease. Cold Spring Harb. Perspect. Biol. 4, a008086 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, V.S. et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149, 1245–1256 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Salic, A., Lee, E., Mayer, L. & Kirschner, M.W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M.W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lamoral-Theys, D. et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J. Med. Chem. 52, 6244–6256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chattopadhyay, U., Chaudhuri, L., Das, S., Kumar, Y. & Ghosal, S. Activation of lymphocytes by lycorine-1-O-β-D-glucoside. Pharmazie 39, 855–856 (1984).

    CAS  PubMed  Google Scholar 

  9. Jho, E.H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chamorro, M.N. et al. FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, W. et al. naked cuticle encodes an inducible antagonist of Wnt signalling. Nature 403, 789–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Klein, P.S. & Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, W. & Lin, S.C. Axin: a master scaffold for multiple signaling pathways. Neurosignals 13, 99–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarz-Romond, T. et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14, 484–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Erter, C.E., Wilm, T.P., Basler, N., Wright, C.V. & Solnica-Krezel, L. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, 3571–3583 (2001).

    CAS  PubMed  Google Scholar 

  19. Lekven, A.C., Thorpe, C.J., Waxman, J.S. & Moon, R.T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Szeto, D.P. & Kimelman, D. Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation. Development 131, 3751–3760 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Davidson, A.J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Ramel, M.C., Buckles, G.R., Baker, K.D. & Lekven, A.C. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev. Biol. 287, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Trowbridge, J.J., Moon, R.T. & Bhatia, M. Hematopoietic stem cell biology: too much of a Wnt thing. Nat. Immunol. 7, 1021–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fiedler, M., Mendoza-Topaz, C., Rutherford, T.J., Mieszczanek, J. & Bienz, M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc. Natl. Acad. Sci. USA 108, 1937–1942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakanaka, C. & Williams, L.T. Functional domains of axin. Importance of the C terminus as an oligomerization domain. J. Biol. Chem. 274, 14090–14093 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, W., Zeng, L. & Costantini, F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J. Biol. Chem. 274, 3439–3445 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, W. et al. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions. J. Biol. Chem. 280, 5054–5060 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y.T. et al. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J. Biol. Chem. 286, 8597–8608 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, T. et al. Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/β-catenin signaling. J. Biol. Chem. 284, 6683–6689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, S.E. et al. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340, 867–870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Congdon, K.L. et al. Activation of Wnt signaling in hematopoietic regeneration. Stem Cells 26, 1202–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12, 89–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clément-Lacroix, P. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA 102, 17406–17411 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Engler, T.A. et al. Substituted 3-imidazo[1,2-a]pyridin-3-yl- 4-(1,2,3,4-tetrahydro-[1,4]diazepino-[6,7,1-hi]indol-7-yl)pyrrole-2,5-diones as highly selective and potent inhibitors of glycogen synthase kinase-3. J. Med. Chem. 47, 3934–3937 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Graham, J.A. et al. Suppressive regulatory T cell activity is potentiated by glycogen synthase kinase 3β inhibition. J. Biol. Chem. 285, 32852–32859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Youssef, D.T. Alkaloids of the flowers of Hippeastrum vittatum. J. Nat. Prod. 64, 839–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L. et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J. Biol. Chem. 274, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Z., Nie, F., Wang, S. & Li, L. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc. Natl. Acad. Sci. USA 108, 3116–3123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oxtoby, E. & Jowett, T. Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 21, 1087–1095 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding, Y. et al. Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation. J. Cell Biol. 182, 865–872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  PubMed  Google Scholar 

  48. Deeb, S.J., D'Souza, R.C., Cox, J., Schmidt-Supprian, M. & Mann, M. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol. Cell Proteomics 11, 77–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  50. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Abdiche, Y., Malashock, D., Pinkerton, A. & Pons, J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem. 377, 209–217 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the gift of LRP6 and MESD plasmids from X. He (Boston Children's Hospital), and we thank the Zebrafish Core Facility–Shanghai Institute of Biochemistry and Cell Biology for providing zebrafish embryos. This work is supported by the Ministry of Science and Technology of China (grant 2010CB912100 to L.L., 2011CB966300 to X.S. and 2013CB910900 to W.P.) and the National Natural Science Foundation of China (grants 30930052 and 31230044 to L.L. and 30830114 to X.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.W. designed, performed and analyzed biochemical, zebrafish and cell culture experiments. J.Y., D.C. and L.W. designed and performed chemical synthesis under the guidance of X.H. F.N. performed zebrafish embryo experiments. X.S. provided bioinformatics support. C.J. and W.M. performed the embryonic stem cell assays under the guidance of W.P. C.F. provided Flag-tagged Axin-stable HEK293T cells. S.X. and H.M. purified proteins. C.L. performed MS experiments under R.Z.'s guidance. S.W., C.F., W.P., X.S. and L.L. wrote the manuscript with advice from all of the authors. L.L. guided all of the aspects of this study.

Corresponding authors

Correspondence to Xiaojiang Hao or Lin Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1-23, Supplementary Tables 1-4 and Supplementary Notes. (PDF 7650 kb)

Supplementary Data Set 1

Supplementary Dataset 1 (XLS 979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Yin, J., Chen, D. et al. Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction. Nat Chem Biol 9, 579–585 (2013). https://doi.org/10.1038/nchembio.1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1309

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research