Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deciphering biased-agonism complexity reveals a new active AT1 receptor entity

Abstract

Functional selectivity of G protein–coupled receptor (GPCR) ligands toward different downstream signals has recently emerged as a general hallmark of this receptor class. However, pleiotropic and crosstalk signaling of GPCRs makes functional selectivity difficult to decode. To look from the initial active receptor point of view, we developed new, highly sensitive and direct bioluminescence resonance energy transfer–based G protein activation probes specific for all G protein isoforms, and we used them to evaluate the G protein–coupling activity of [1Sar4Ile8Ile]-angiotensin II (SII), previously described as an angiotensin II type 1 (AT1) receptor–biased agonist that is G protein independent but β-arrestin selective. By multiplexing assays sensing sequential signaling events, from receptor conformations to downstream signaling, we decoded SII as an agonist stabilizing a G protein–dependent AT1A receptor signaling module different from that of the physiological agonist angiotensin II, both in recombinant and primary cells. Thus, a biased agonist does not necessarily select effects from the physiological agonist but may instead stabilize and create a new distinct active pharmacological receptor entity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selectivity of Gαβ1γ2 activation of BRET probes in HEK293T cells.
Figure 2: Gαβ1γ2 activation after AT1A-R stimulation with Ang II or SII.
Figure 3: AT1A-R–mediated β-arrestin 2 recruitment after Ang II or SII stimulation.
Figure 4: Calcium production after Ang II or SII stimulation in cells expressing AT1A-R.
Figure 5: Adenylyl cyclase activity after Ang II or SII stimulation in cells expressing AT1A-R.
Figure 6: BRET measurements of AT1A-R and Gα interactions in living cells.
Figure 7: AT1A-R–mediated ERK phosphorylation after Ang II or SII stimulation.
Figure 8: Schematic representation of G protein–dependent signaling pathways activated by Ang II or SII AT1A-R agonists.

Similar content being viewed by others

References

  1. Kenakin, T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238 (1995).

    Article  CAS  Google Scholar 

  2. Galandrin, S. & Bouvier, M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1584 (2006).

    Article  CAS  Google Scholar 

  3. Urban, J.D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    Article  CAS  Google Scholar 

  4. Denis, C., Sauliere, A., Galandrin, S., Senard, J.M. & Gales, C. Probing heterotrimeric G protein activation: applications to biased ligands. Curr. Pharm. Des. 28, 128–144 (2012).

    Article  Google Scholar 

  5. Ahn, S., Shenoy, S.K., Wei, H. & Lefkowitz, R.J. Differential kinetic and spatial patterns of β-arrestin and G protein–mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518–35525 (2004).

    Article  CAS  Google Scholar 

  6. Aplin, M. et al. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein–dependent and –independent pathways in cardiac myocytes and Langendorff-perfused hearts. Basic Clin. Pharmacol. Toxicol. 100, 289–295 (2007).

    Article  CAS  Google Scholar 

  7. Wei, H. et al. Independent β-arrestin 2 and G protein–mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. USA 100, 10782–10787 (2003).

    Article  CAS  Google Scholar 

  8. Galés, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 (2006).

    Article  Google Scholar 

  9. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  Google Scholar 

  10. Loening, A.M., Wu, A.M. & Gambhir, S.S. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat. Methods 4, 641–643 (2007).

    Article  CAS  Google Scholar 

  11. Pepperl, D.J. & Regan, J.W. Selective coupling of α2-adrenergic receptor subtypes to cyclic AMP-dependent reporter gene expression in transiently transfected JEG-3 cells. Mol. Pharmacol. 44, 802–809 (1993).

    CAS  PubMed  Google Scholar 

  12. Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  CAS  Google Scholar 

  13. Offermanns, S. et al. Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11 . Mol. Pharmacol. 45, 890–898 (1994).

    CAS  PubMed  Google Scholar 

  14. Nakahata, N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther. 118, 18–35 (2008).

    Article  CAS  Google Scholar 

  15. Mervine, S.M., Yost, E.A., Sabo, J.L., Hynes, T.R. & Berlot, C.H. Analysis of G protein βγ dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of β1 for particular γ subunits. Mol. Pharmacol. 70, 194–205 (2006).

    CAS  Google Scholar 

  16. Wong, S.K., Parker, E.M. & Ross, E.M. Chimeric muscarinic cholinergic: β-adrenergic receptors that activate Gs in response to muscarinic agonists. J. Biol. Chem. 265, 6219–6224 (1990).

    CAS  PubMed  Google Scholar 

  17. Christensen, G.L. et al. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell. Proteomics 9, 1540–1553 (2010).

    Article  CAS  Google Scholar 

  18. Rajagopal, K. et al. β-arrestin 2–mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc. Natl. Acad. Sci. USA 103, 16284–16289 (2006).

    Article  CAS  Google Scholar 

  19. Hunyady, L. & Catt, K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 20, 953–970 (2006).

    Article  CAS  Google Scholar 

  20. Macrez-Leprêtre, N., Kalkbrenner, F., Morel, J.L., Schultz, G. & Mironneau, J. G protein heterotrimer Gα13β1γ3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in rat portal vein myocytes. J. Biol. Chem. 272, 10095–10102 (1997).

    Article  Google Scholar 

  21. Hansen, J.L. et al. The human angiotensin AT1 receptor supports G protein–independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation. Eur. J. Pharmacol. 590, 255–263 (2008).

    Article  CAS  Google Scholar 

  22. Shukla, A.K. et al. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl. Acad. Sci. USA 105, 9988–9993 (2008).

    Article  CAS  Google Scholar 

  23. Takasaki, J. et al. A novel Gαq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).

    Article  CAS  Google Scholar 

  24. Brini, M. et al. Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J. Biol. Chem. 270, 9896–9903 (1995).

    Article  CAS  Google Scholar 

  25. Baukal, A.J., Hunyady, L., Catt, K.J. & Balla, T. Evidence for participation of calcineurin in potentiation of agonist-stimulated cyclic AMP formation by the calcium-mobilizing hormone, angiotensin II. J. Biol. Chem. 269, 24546–24549 (1994).

    CAS  PubMed  Google Scholar 

  26. Ostrom, R.S. et al. Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs crosstalk regulates collagen production in cardiac fibroblasts. J. Biol. Chem. 278, 24461–24468 (2003).

    Article  CAS  Google Scholar 

  27. Audet, N. et al. Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing δ-opioid receptors and heterotrimeric G proteins. J. Biol. Chem. 283, 15078–15088 (2008).

    Article  CAS  Google Scholar 

  28. Dupré, D.J. et al. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. J. Biol. Chem. 281, 34561–34573 (2006).

    Article  Google Scholar 

  29. Kim, J., Ahn, S., Rajagopal, K. & Lefkowitz, R.J. Independent β-arrestin 2 and Gq/protein kinase Cζ pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. J. Biol. Chem. 284, 11953–11962 (2009).

    Article  CAS  Google Scholar 

  30. Sun, Y. et al. Dosage-dependent switch from G protein–coupled to G protein–independent signaling by a GPCR. EMBO J. 26, 53–64 (2007).

    Article  Google Scholar 

  31. Kohout, T.A., Lin, F.S., Perry, S.J., Conner, D.A. & Lefkowitz, R.J. β-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl. Acad. Sci. USA 98, 1601–1606 (2001).

    CAS  PubMed  Google Scholar 

  32. Whalen, E.J., Rajagopal, S. & Lefkowitz, R.J. Therapeutic potential of β-arrestin– and G protein–biased agonists. Trends Mol. Med. 17, 126–139 (2011).

    Article  CAS  Google Scholar 

  33. Zhai, P. et al. Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice. J. Clin. Invest. 115, 3045–3056 (2005).

    Article  CAS  Google Scholar 

  34. Christensen, G.L. et al. AT1 receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor. Mol. Cell Endocrinol. 331, 49–56 (2011).

    Article  CAS  Google Scholar 

  35. Lefkowitz, R.J. & Whalen, E.J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  Google Scholar 

  36. Kim, J. et al. Functional antagonism of different G protein–coupled receptor kinases for β-arrestin–mediated angiotensin II receptor signaling. Proc. Natl. Acad. Sci. USA 102, 1442–1447 (2005).

    Article  CAS  Google Scholar 

  37. Breton, B., Lagace, M. & Bouvier, M. Combining resonance energy transfer methods reveals a complex between the α2A-adrenergic receptor, Gαi1β1γ2, and GRK2. FASEB J. 24, 4733–4743 (2010).

    Article  CAS  Google Scholar 

  38. Zidar, D.A., Violin, J.D., Whalen, E.J. & Lefkowitz, R.J. Selective engagement of G protein–coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl. Acad. Sci. USA 106, 9649–9654 (2009).

    Article  CAS  Google Scholar 

  39. Holloway, A.C. et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol. Pharmacol. 61, 768–777 (2002).

    Article  CAS  Google Scholar 

  40. Hoffmann, C., Zurn, A., Bunemann, M. & Lohse, M.J. Conformational changes in G protein–coupled receptors—the quest for functionally selective conformations is open. Br. J. Pharmacol. 153 (suppl. 1), S358–S366 (2008).

    CAS  PubMed  Google Scholar 

  41. Reiner, S., Ambrosio, M., Hoffmann, C. & Lohse, M.J. Differential signaling of the endogenous agonists at the β2-adrenergic receptor. J. Biol. Chem. 285, 36188–36198 (2010).

    Article  CAS  Google Scholar 

  42. Reversi, A. et al. The oxytocin receptor antagonist atosiban inhibits cell growth via a “biased agonist” mechanism. J. Biol. Chem. 280, 16311–16318 (2005).

    Article  CAS  Google Scholar 

  43. Burgen, A.S. Conformational changes and drug action. Fed. Proc. 40, 2723–2728 (1981).

    CAS  PubMed  Google Scholar 

  44. Vaidehi, N. & Kenakin, T. The role of conformational ensembles of seven-transmembrane receptors in functional selectivity. Curr. Opin. Pharmacol. 10, 775–781 (2010).

    Article  CAS  Google Scholar 

  45. Violin, J.D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    Article  CAS  Google Scholar 

  46. Violin, J.D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    Article  CAS  Google Scholar 

  47. Kenakin, T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 336, 296–302 (2011).

    Article  CAS  Google Scholar 

  48. Leifert, W.R., Aloia, A.L., Bucco, O., Glatz, R.V. & McMurchie, E.J. G protein–coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. J. Biomol. Screen. 10, 765–779 (2005).

    Article  CAS  Google Scholar 

  49. Violin, J.D. & Lefkowitz, R.J. β-arrestin–biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    Article  CAS  Google Scholar 

  50. Blanpain, C. et al. CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood 94, 1899–1905 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Dr. Hervé Paris, who passed away suddenly during the process of this work. We thank T. Hébert, J. Javitch and M. Lohse for their critical reading of the manuscript and R. D'Angelo for excellent technical support and advice regarding imaging (Cellular Imaging Facility I2MC, TRI Platform). Wild-type, β-arrestin 1 knockout, and β-arrestin 1 and 2 double-knockout MEF cells were generously provided by R. Lefkowitz (Duke University Medical Center). This work was supported by a grant from the French National Research Agency (ANR-06-BLAN-0400-02 to C.G.) J.L.H. is sponsored by the Danish National Research Foundation, the Danish Council for Independent Research Medical Sciences and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.S. did most of the experiments, analyzed and interpreted data and cowrote the manuscript. M.B. did and interpreted all of the ERK experiments. H.P. helped construct and characterize the G protein BRET probes. C.D. did and analyzed the aequorin-based Ca2+ measurements in HEK293T cells. F.F. constructed and characterized the BRET-based PKA biosensor. M.-F.A. helped construct the G protein probes and M.-H.S. helped with cardiac-fibroblast primary cell culture. J.L.H. and J.T.H. provided the YM-254890 Gq inhibitor and several AT1-R–encoding plasmid vectors, and they helped with data interpretation and manuscript preparation. A.P. and J.-M.S. assisted with data processing and analysis and with manuscript preparation. C.G. designed and managed the overall project, analyzed and interpreted data and cowrote the manuscript.

Corresponding author

Correspondence to Céline Galés.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulière, A., Bellot, M., Paris, H. et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol 8, 622–630 (2012). https://doi.org/10.1038/nchembio.961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing