Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes

Abstract

The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast replicative DNA polymerases and Rev3 contain Fe-S clusters in vivo.
Figure 2: The Fe-S cluster is coordinated by the CysB motif and is stabilized by accessory-subunit binding.
Figure 3: Recombinant purified CTDs of Pol1, Pol2, Pol3 and Rev3 harbor a [4Fe-4S] cluster.
Figure 4: Functional integrity of purified Pol δ complex depends on binding of an Fe-S cluster to Pol3.
Figure 5: The CysA motif of Pol δ is critical for processive DNA replication with PCNA.
Figure 6: Role of mitochondria and Fe-S cluster biogenesis in nuclear DNA replication.

Similar content being viewed by others

References

  1. Johansson, E. & Macneill, S.A. The eukaryotic replicative DNA polymerases take shape. Trends Biochem. Sci. 35, 339–347 (2010).

    Article  CAS  Google Scholar 

  2. Nick McElhinny, S.A., Gordenin, D.A., Stith, C.M., Burgers, P.M. & Kunkel, T.A. Division of labor at the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).

    Article  CAS  Google Scholar 

  3. Pursell, Z.F., Isoz, I., Lundström, E.B., Johansson, E. & Kunkel, T.A. Yeast DNA polymerase ɛ participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    Article  CAS  Google Scholar 

  4. Burgers, P.M. et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276, 43487–43490 (2001).

    Article  CAS  Google Scholar 

  5. Mäkiniemi, M. et al. A novel family of DNA-polymerase-associated B subunits. Trends Biochem. Sci. 24, 14–16 (1999).

    Article  Google Scholar 

  6. Baranovskiy, A.G. et al. X-ray structure of the complex of regulatory subunits of human DNA polymerase δ. Cell Cycle 7, 3026–3036 (2008).

    Article  CAS  Google Scholar 

  7. Nelson, J.R., Lawrence, C.W. & Hinkle, D.C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649 (1996).

    Article  CAS  Google Scholar 

  8. Prakash, S., Johnson, R.E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

    Article  CAS  Google Scholar 

  9. Bemark, M., Khamlichi, A.A., Davies, S.L. & Neuberger, M.S. Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr. Biol. 10, 1213–1216 (2000).

    Article  CAS  Google Scholar 

  10. Krishna, S.S., Majumdar, I. & Grishin, N.V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).

    Article  CAS  Google Scholar 

  11. Tahirov, T.H., Makarova, K.S., Rogozin, I.B., Pavlov, Y.I. & Koonin, E.V. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ɛ and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct 4, 11 (2009).

    Article  Google Scholar 

  12. Swan, M.K., Johnson, R.E., Prakash, L., Prakash, S. & Aggarwal, A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat. Struct. Mol. Biol. 16, 979–986 (2009).

    Article  CAS  Google Scholar 

  13. Evanics, F., Maurmann, L., Yang, W.W. & Bose, R.N. Nuclear magnetic resonance structures of the zinc finger domain of human DNA polymerase-α. Biochim. Biophys. Acta 1651, 163–171 (2003).

    Article  CAS  Google Scholar 

  14. Klinge, S., Núñez-Ramírez, R., Llorca, O. & Pellegrini, L. 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J. 28, 1978–1987 (2009).

    Article  CAS  Google Scholar 

  15. Mizuno, T., Yamagishi, K., Miyazawa, H. & Hanaoka, F. Molecular architecture of the mouse DNA polymerase α-primase complex. Mol. Cell. Biol. 19, 7886–7896 (1999).

    Article  CAS  Google Scholar 

  16. Dua, R., Levy, D.L. & Campbell, J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ɛ and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283–22288 (1999).

    Article  CAS  Google Scholar 

  17. Sanchez Garcia, J., Ciufo, L.F., Yang, X., Kearsey, S.E. & MacNeill, S.A. The C-terminal zinc finger of the catalytic subunit of DNA polymerase δ is responsible for direct interaction with the B-subunit. Nucleic Acids Res. 32, 3005–3016 (2004).

    Article  CAS  Google Scholar 

  18. Chanet, R. & Heude, M. Characterization of mutations that are synthetic lethal with pol3–13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae. Curr. Genet. 43, 337–350 (2003).

    Article  CAS  Google Scholar 

  19. Lill, R. Function and biogenesis iron-sulphur proteins. Nature 460, 831–838 (2009).

    Article  CAS  Google Scholar 

  20. Hausmann, A. et al. The eukaryotic P-loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc. Natl. Acad. Sci. USA 102, 3266–3271 (2005).

    Article  CAS  Google Scholar 

  21. Zhang, Y. et al. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell. Biol. 28, 5569–5582 (2008).

    Article  CAS  Google Scholar 

  22. Netz, D.J.A. et al. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 6, 758–765 (2010).

    Article  CAS  Google Scholar 

  23. Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W.E. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 22, 4826–4835 (2003).

    Article  CAS  Google Scholar 

  24. Netz, D.J.A., Pierik, A.J., Stümpfig, M., Mühlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 3, 278–286 (2007).

    Article  CAS  Google Scholar 

  25. Balk, J., Pierik, A.J., Netz, D.J.A., Mühlenhoff, U. & Lill, R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J. 23, 2105–2115 (2004).

    Article  CAS  Google Scholar 

  26. Balk, J., Netz, D.J.A., Tepper, K., Pierik, A.J. & Lill, R. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly. Mol. Cell. Biol. 25, 10833–10841 (2005).

    Article  CAS  Google Scholar 

  27. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are required for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    Article  CAS  Google Scholar 

  28. Klinge, S., Hirst, J., Maman, J.D., Krude, T. & Pellegrini, L. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875–877 (2007).

    Article  CAS  Google Scholar 

  29. Burgers, P.M. & Gerik, K.J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase δ. J. Biol. Chem. 273, 19756–19762 (1998).

    Article  CAS  Google Scholar 

  30. Orme-Johnson, W.H. & Orme-Johnson, A.R. Iron-sulfur proteins: the problem of determining cluster type. in Iron-Sulfur Proteins (ed. Spiro, T.G.) 67–95 (Wiley, 1982).

  31. Kent, T.A. et al. Mössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. Proc. Natl. Acad. Sci. USA 79, 1096–1100 (1982).

    Article  CAS  Google Scholar 

  32. Tsurimoto, T. & Stillman, B. Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases, α and δ. EMBO J. 8, 3883–3889 (1989).

    Article  CAS  Google Scholar 

  33. Johansson, E., Garg, P. & Burgers, P.M. The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279, 1907–1915 (2004).

    Article  CAS  Google Scholar 

  34. Montecucco, A. et al. DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J. 17, 3786–3795 (1998).

    Article  CAS  Google Scholar 

  35. Hara, K. et al. Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase ζ and REV1. J. Biol. Chem. 285, 12299–12307 (2010).

    Article  CAS  Google Scholar 

  36. Dauter, Z., Wilson, K.S., Sieker, L.C., Moulis, J.M. & Meyer, J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc. Natl. Acad. Sci. USA 93, 8836–8840 (1996).

    Article  CAS  Google Scholar 

  37. Ramelot, T.A. et al. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J. Mol. Biol. 344, 567–583 (2004).

    Article  CAS  Google Scholar 

  38. Urzica, E., Pierik, A.J., Mühlenhoff, U. & Lill, R. Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48, 4946–4958 (2009).

    Article  CAS  Google Scholar 

  39. Nar, H. et al. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur. J. Biochem. 205, 1123–1129 (1992).

    Article  CAS  Google Scholar 

  40. Abbouni, B., Oehlmann, W., Stolle, P., Pierik, A.J. & Auling, G. Electron paramagnetic resonance (EPR) spectroscopy of the stable-free radical in the native metallo-cofactor of the manganese-ribonucleotide reductase (Mn-RNR) of Corynebacterium glutamicum. Free Radic. Res. 43, 943–950 (2009).

    Article  CAS  Google Scholar 

  41. Boal, A.K., Cotruvo, J.A. Jr., Stubbe, J. & Rosenzweig, A.C. Structural basis for activation of class Ib ribonucleotide reductase. Science 329, 1526–1530 (2010).

    Article  CAS  Google Scholar 

  42. Burgers, P.M.J. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ɛ. J. Biol. Chem. 266, 22698–22706 (1991).

    CAS  PubMed  Google Scholar 

  43. Garg, P., Stith, C.M., Majka, J. & Burgers, P.M.J. Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase ζ. J. Biol. Chem. 280, 23446–23450 (2005).

    Article  CAS  Google Scholar 

  44. Wong, S.W. et al. DNA polymerases α and δ are immunologically and structurally distinct. J. Biol. Chem. 264, 5924–5928 (1989).

    CAS  PubMed  Google Scholar 

  45. Veatch, J.R., McMurray, M.A., Nelson, Z.W. & Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247–1258 (2009).

    Article  Google Scholar 

  46. Fortune, J.M., Stith, C.M., Kissling, G.E., Burgers, P.M. & Kunkel, T.A. RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase δ. Nucleic Acids Res. 34, 4335–4341 (2006).

    Article  CAS  Google Scholar 

  47. Ayyagari, R., Impellizzeri, K.J., Yoder, B.L., Gary, S.L. & Burgers, P.M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15, 4420–4429 (1995).

    Article  CAS  Google Scholar 

  48. Gomes, X.V., Gary, S.L. & Burgers, P.M. Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. J. Biol. Chem. 275, 14541–14549 (2000).

    Article  CAS  Google Scholar 

  49. Henricksen, L.A., Umbricht, C.B. & Wold, M.S. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269, 11121–11132 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Yoder for yeast two-hybrid analysis and M. Reuter for help with cloning. This work was supported by grant GM032431 from the US National Institutes of Health (P.M.J.B.), the Deutsche Forschungsgemeinschaft (SFB 593, Gottfried-Wilhelm Leibniz program, and GRK 1216), Rhön Klinikum, von Behring-Röntgen Stiftung, LOEWE-Program of State Hessen, Max-Planck Gesellschaft and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

All authors performed experiments. D.J.A.N., R.L., P.M.J.B. and A.J.P. designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Roland Lill, Peter M J Burgers or Antonio J Pierik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1024 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netz, D., Stith, C., Stümpfig, M. et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8, 125–132 (2012). https://doi.org/10.1038/nchembio.721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing