Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A kinetic view of GPCR allostery and biased agonism

Abstract

G-protein-coupled receptors (GPCRs) are one of the most tractable classes of drug targets. These dynamic proteins can adopt multiple active states that are linked to distinct functional outcomes. Such states can be differentially stabilized by ligands interacting with the endogenous agonist-binding orthosteric site and/or by ligands acting via spatially distinct allosteric sites, leading to the phenomena of 'biased agonism' or 'biased modulation'. These paradigms are having a major impact on modern drug discovery, but it is becoming increasingly apparent that 'kinetic context', at the level of both ligand–receptor and receptor—signal pathway kinetics, can have a profound impact on the observation and quantification of these phenomena. The concept of kinetic context thus represents an important new consideration that should be routinely incorporated into contemporary chemical biology and drug discovery studies of GPCR bias and allostery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biased agonism and biased modulation.
Figure 2: Common analytical models of ligand action at GPCRs.
Figure 3: Effects of allosteric-modulator-mediated changes in binding kinetics on the equilibrium behavior of orthosteric ligands.
Figure 4: The extracellular vestibule of rhodopsin-like GPCRs can control the access and egress of orthosteric ligands, and can contribute to the formation of a binding site for allosteric modulators.
Figure 5: Failure to attain equilibrium between orthosteric and allosteric ligands can lead to apparently complex behaviors of allosteric modulators.
Figure 6: Kinetic context can have a profound impact on the quantification of biased agonism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS  PubMed  Google Scholar 

  2. Lefkowitz, R.J. & Shenoy, S.K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    CAS  PubMed  Google Scholar 

  3. Christopoulos, A. et al. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918–947 (2014).

    CAS  PubMed  Google Scholar 

  4. Keov, P., Sexton, P.M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60, 24–35 (2011).

    CAS  PubMed  Google Scholar 

  5. Leff, P. The two-state model of receptor activation. Trends Pharmacol. Sci. 16, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  6. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R.J. A mutation-induced activated state of the β 2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  7. Kenakin, T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    CAS  PubMed  Google Scholar 

  8. Canals, M. et al. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659 (2012).

    CAS  PubMed  Google Scholar 

  9. Shonberg, J. et al. Biased agonism at G protein-coupled receptors: the promise and the challenges—a medicinal chemistry perspective. Med. Res. Rev. 34, 1286–1330 (2014).

    CAS  PubMed  Google Scholar 

  10. Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 (2013).

    CAS  PubMed  Google Scholar 

  11. Leach, K., Sexton, P.M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389 (2007). This is the first publication of an operational model combining allosteric modulation and agonism for quantification of GPCR allosteric effects.

    CAS  PubMed  Google Scholar 

  12. Wootten, D., Christopoulos, A. & Sexton, P.M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013).

    CAS  PubMed  Google Scholar 

  13. Violin, J.D., Crombie, A.L., Soergel, D.G. & Lark, M.W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308–316 (2014).

    CAS  PubMed  Google Scholar 

  14. Rominger, D.H., Cowan, C.L., Gowen-MacDonald, W. & Violin, J.D. Biased ligands: pathway validation for novel GPCR therapeutics. Curr. Opin. Pharmacol. 16, 108–115 (2014).

    CAS  PubMed  Google Scholar 

  15. Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rahmeh, R. et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 109, 6733–6738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Granier, S., Kim, S., Fung, J.J., Bokoch, M.P. & Parnot, C. FRET-based measurement of GPCR conformational changes. Methods Mol. Biol. 552, 253–268 (2009).

    CAS  PubMed  Google Scholar 

  19. Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β 2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    CAS  PubMed  Google Scholar 

  20. Altenbach, C., Kusnetzow, A.K., Ernst, O.P., Hofmann, K.P. & Hubbell, W.L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. West, G.M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahsai, A.W. et al. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, M.-H. et al. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nuber, S. et al. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Furness, S.G.B. et al. Ligand-dependent modulation of G protein conformation alters drug efficacy. Cell 167, 739–749.e11 (2016).

    CAS  PubMed  Google Scholar 

  27. Kenakin, T. & Christopoulos, A. Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol. Sci. 32, 189–196 (2011).

    CAS  PubMed  Google Scholar 

  28. Black, J.W., Leff, P., Shankley, N.P. & Wood, J. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br. J. Pharmacol. 84, 561–571 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. De Léan, A., Stadel, J.M. & Lefkowitz, R.J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980). A seminal study that developed the ternary complex model to explain GPCR efficacy within the context of agonist–receptor–G-protein interaction. The same model can be used to quantify allosteric modulator binding properties at equilibrium.

    PubMed  Google Scholar 

  30. Ehlert, F.J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33, 187–194 (1988).

    CAS  PubMed  Google Scholar 

  31. Stockton, J.M., Birdsall, N.J., Burgen, A.S. & Hulme, E.C. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23, 551–557 (1983).

    CAS  PubMed  Google Scholar 

  32. Paton, W.D.M. A theory of drug action based on the rate of drug-receptor combination. Proc. Biol. Sci. 154, 21–69 (1961). The first study that explicitly attempted to link drug efficacy to drug–receptor kinetics.

    Google Scholar 

  33. Waelbroeck, M., Boufrahi, L. & Swillens, S. Seven helix receptors are enzymes catalysing G protein activation. What is the agonist Kact? J. Theor. Biol. 187, 15–37 (1997).

    CAS  PubMed  Google Scholar 

  34. Linderman, J.J. Modeling of G-protein-coupled receptor signaling pathways. J. Biol. Chem. 284, 5427–5431 (2009).

    CAS  PubMed  Google Scholar 

  35. Kinzer-Ursem, T.L. & Linderman, J.J. Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein-coupled receptor signaling. PLoS Comput. Biol. 3, e6 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. Jaakola, V.-P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rasmussen, S.G.F. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rasmussen, S.G.F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    CAS  PubMed  Google Scholar 

  40. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kruse, A.C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). The first high-resolution crystal structure of an active-state GPCR bound to both an orthosteric agonist and positive allosteric modulator. This study provided atomic-level insights into mechanisms underlying PAM effects and confirmed the vital role played by the extracellular vestibule in this process.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. DeVree, B.T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sykes, D.A., Dowling, M.R. & Charlton, S.J. Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol. Pharmacol. 76, 543–551 (2009).

    CAS  PubMed  Google Scholar 

  44. Guo, D., Mulder-Krieger, T., IJzerman, A.P. & Heitman, L.H. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br. J. Pharmacol. 166, 1846–1859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosethorne, E.M. et al. Long receptor residence time of C26 contributes to super agonist activity at the human β2 adrenoceptor. Mol. Pharmacol. 89, 467–475 (2016).

    CAS  PubMed  Google Scholar 

  46. Louvel, J. et al. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur. J. Med. Chem. 101, 681–691 (2015).

    CAS  PubMed  Google Scholar 

  47. Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842 (2016). The first study to explicitly address the role of drug–receptor and receptor-signaling kinetics in biased agonism.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gentry, P.R., Sexton, P.M. & Christopoulos, A. Novel allosteric modulators of G protein-coupled receptors. J. Biol. Chem. 290, 19478–19488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Westhuizen, E.T., Valant, C., Sexton, P.M. & Christopoulos, A. Endogenous allosteric modulators of G protein-coupled receptors. J. Pharmacol. Exp. Ther. 353, 246–260 (2015).

    CAS  PubMed  Google Scholar 

  50. Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    CAS  PubMed  Google Scholar 

  51. Motulsky, H.J. & Mahan, L.C. The kinetics of competitive radioligand binding predicted by the law of mass action. Mol. Pharmacol. 25, 1–9 (1984). An important study that presented a general method, now widely used, for determining the binding kinetics of both labeled and unlabeled ligands at GPCRs.

    CAS  PubMed  Google Scholar 

  52. Christopoulos, A. Advances in G protein-coupled receptor allostery: from function to structure. Mol. Pharmacol. 86, 463–478 (2014).

    PubMed  Google Scholar 

  53. Lazareno, S., Popham, A. & Birdsall, N.J. Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 62, 1492–1505 (2002).

    CAS  PubMed  Google Scholar 

  54. Gao, Z.G. & Ijzerman, A.P. Allosteric modulation of A(2A) adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000).

    CAS  PubMed  Google Scholar 

  55. Bruns, R.F. & Fergus, J.H. Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol. Pharmacol. 38, 939–949 (1990).

    CAS  PubMed  Google Scholar 

  56. Clark, A.L. & Mitchelson, F. The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 58, 323–331 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).

    CAS  PubMed  Google Scholar 

  58. Thal, D.M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kruse, A.C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dror, R.O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013). The first computational biology study exploring the role of the extracellular vestibule of a GPCR in the binding of different classes of allosteric modulator using long time-scale molecular dynamics. The work identified multiple mechanisms that can contribute to observed cooperativity between orthosteric and allosteric ligands.

    CAS  PubMed  Google Scholar 

  61. Dror, R.O. et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA 108, 13118–13123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen, A.T.N. et al. Extracellular loop 2 of the adenosine A1 receptor has a key role in orthosteric ligand affinity and agonist efficacy. Mol. Pharmacol. 90, 703–714 (2016).

    CAS  PubMed  Google Scholar 

  63. Proska, J. & Tucek, S. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45, 709–717 (1994). The first study to identify and highlight the major impact that allosteric modulators can have on the kinetics of orthosteric ligand binding and its consequences for interpretation of modulator mechanisms of action.

    CAS  PubMed  Google Scholar 

  64. Avlani, V., May, L.T., Sexton, P.M. & Christopoulos, A. Application of a kinetic model to the apparently complex behavior of negative and positive allosteric modulators of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 308, 1062–1072 (2004).

    CAS  PubMed  Google Scholar 

  65. Limbird, L.E., Meyts, P.D. & Lefkowitz, R.J. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 64, 1160–1168 (1975).

    CAS  PubMed  Google Scholar 

  66. Harikumar, K.G. et al. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proc. Natl. Acad. Sci. USA 109, 18607–18612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. May, L.T., Bridge, L.J., Stoddart, L.A., Briddon, S.J. & Hill, S.J. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J. 25, 3465–3476 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kara, E., Lin, H. & Strange, P.G. Co-operativity in agonist binding at the D2 dopamine receptor: evidence from agonist dissociation kinetics. J. Neurochem. 112, 1442–1453 (2010).

    CAS  PubMed  Google Scholar 

  69. Urizar, E. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 24, 1954–1964 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Szabo, M., Klein Herenbrink, C., Christopoulos, A., Lane, J.R. & Capuano, B. Structure-activity relationships of privileged structures lead to the discovery of novel biased ligands at the dopamine D2 receptor. J. Med. Chem. 57, 4924–4939 (2014).

    CAS  PubMed  Google Scholar 

  72. Tschammer, N., Bollinger, S., Kenakin, T. & Gmeiner, P. Histidine 6.55 is a major determinant of ligand-biased signaling in dopamine D2L receptor. Mol. Pharmacol. 79, 575–585 (2011).

    CAS  PubMed  Google Scholar 

  73. Charlton, S.J. & Vauquelin, G. Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br. J. Pharmacol. 161, 1250–1265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Unett, D.J. et al. Kinetics of 5-HT2B receptor signaling: profound agonist-dependent effects on signaling onset and duration. J. Pharmacol. Exp. Ther. 347, 645–659 (2013).

    CAS  PubMed  Google Scholar 

  75. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013). The first study to provide high-resolution structural insights into the molecular mechanism of (long) agonist residence time and its implications for bias.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610–614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shonberg, J. et al. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem. 56, 9199–9221 (2013).

    CAS  PubMed  Google Scholar 

  78. Chen, X.-T. et al. Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl](2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl)amine (TRV130), for the treatment of acute severe pain. J. Med. Chem. 56, 8019–8031 (2013).

    CAS  PubMed  Google Scholar 

  79. Baltos, J.-A. et al. Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol. Pharmacol. 90, 12–22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hiller, C. et al. Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety. J. Med. Chem. 56, 5130–5141 (2013).

    CAS  PubMed  Google Scholar 

  81. Murphy, J.E., Padilla, B.E., Hasdemir, B., Cottrell, G.S. & Bunnett, N.W. Endosomes: a legitimate platform for the signaling train. Proc. Natl. Acad. Sci. USA 106, 17615–17622 (2009). One of the first studies to identify a new paradigm involving GPCR signaling that is internalized into endosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  PubMed  Google Scholar 

  83. Vilardaga, J.-P., Jean-Alphonse, F.G. & Gardella, T.J. Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10, 700–706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andreassen, K.V. et al. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias. PLoS One 9, e92042 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).

    CAS  PubMed  Google Scholar 

  87. Ehlert, F.J. Analysis of allosterism in functional assays. J. Pharmacol. Exp. Ther. 315, 740–754 (2005).

    CAS  PubMed  Google Scholar 

  88. Rajagopal, S. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Strachan, R.T. et al. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). J. Biol. Chem. 289, 14211–14224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hall, D.A. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412–1423 (2000).

    CAS  PubMed  Google Scholar 

  91. Copeland, R.A. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15, 87–95 (2016).

    CAS  PubMed  Google Scholar 

  92. Louvel, J. et al. Agonists for the adenosine A1 receptor with tunable residence time. A Case for nonribose 4-amino-6-aryl-5-cyano-2-thiopyrimidines. J. Med. Chem. 57, 3213–3222 (2014).

    CAS  PubMed  Google Scholar 

  93. Schneider, E.V., Böttcher, J., Huber, R., Maskos, K. & Neumann, L. Structure-kinetic relationship study of CDK8/CycC specific compounds. Proc. Natl. Acad. Sci. USA 110, 8081–8086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vauquelin, G. & Charlton, S.J. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br. J. Pharmacol. 161, 488–508 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Guo, D., Hillger, J.M., IJzerman, A.P. & Heitman, L.H. Drug-target residence time--a case for G protein-coupled receptors. Med. Res. Rev. 34, 856–892 (2014).

    CAS  PubMed  Google Scholar 

  96. Disse, B. et al. Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci. 52, 537–544 (1993).

    CAS  PubMed  Google Scholar 

  97. Seeman, P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin. Ther. Targets 10, 515–531 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Thal (Monash University) for assistance in generating Figure 4a and R. Dror (Stanford University) for providing us with PDB files for generating Figure 5a. A.C. and R.G.P. are Senior Principal, and P.M.S. Principal, Research Fellows of the National Health and Medical Research Council (NHMRC) of Australia. J.R.L. is an R D Wright Biomedical Career Development Fellow (NHMRC). L.T.M. is a DECRA Postdoctoral Research Fellow of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Christopoulos.

Ethics declarations

Competing interests

A.C. and P.M.S. have a research contract with Servier, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, J., May, L., Parton, R. et al. A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol 13, 929–937 (2017). https://doi.org/10.1038/nchembio.2431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2431

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research