Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain

Abstract

Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based design of new covalent Mcl-1 inhibitors targeting Lys234.
Figure 2: Covalent compounds selectively induced apoptosis in Mcl-1-dependent cell lines.
Figure 3: Activity of compound 11, but not staurosporine, required Bak.
Figure 4: Compound 5 disrupted Mcl-1 complexes in MOLP-8 cells at concentrations that induced apoptosis.
Figure 5: Effect of Lys234 mutation on the biochemical potency.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zinzalla, G. & Thurston, D.E. Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med. Chem. 1, 65–93 (2009).

    Article  CAS  Google Scholar 

  2. Azzarito, V., Long, K., Murphy, N.S. & Wilson, A.J. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat. Chem. 5, 161–173 (2013).

    Article  CAS  Google Scholar 

  3. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  4. Fletcher, S. & Hamilton, A.D. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J. R. Soc. Interface 3, 215–233 (2006).

    Article  CAS  Google Scholar 

  5. Arrowsmith, C.H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  Google Scholar 

  6. Fischer, P.M. Protein-protein interactions in drug discovery. Drug Design Reviews Online 2, 179–207 (2005).

    Article  CAS  Google Scholar 

  7. Way, J.C. Covalent modification as a strategy to block protein-protein interactions with small-molecule drugs. Curr. Opin. Chem. Biol. 4, 40–46 (2000).

    Article  CAS  Google Scholar 

  8. Singh, J., Petter, R.C., Baillie, T.A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  CAS  Google Scholar 

  9. Tummino, P.J. & Copeland, R.A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008).

    Article  CAS  Google Scholar 

  10. Hajduk, P.J. Fragment-based drug design: how big is too big? J. Med. Chem. 49, 6972–6976 (2006).

    Article  CAS  Google Scholar 

  11. Kuntz, I.D., Chen, K., Sharp, K.A. & Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA 96, 9997–10002 (1999).

    Article  CAS  Google Scholar 

  12. Dutta, S. et al. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 398, 747–762 (2010).

    Article  CAS  Google Scholar 

  13. Smith, A.J.T., Zhang, X., Leach, A.G. & Houk, K.N. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J. Med. Chem. 52, 225–233 (2009).

    Article  CAS  Google Scholar 

  14. Copeland, R.A., Pompliano, D.L. & Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006).

    Article  CAS  Google Scholar 

  15. Walter, A.O. et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 3, 1404–1415 (2013).

    Article  CAS  Google Scholar 

  16. Rudolph, J. & Stokoe, D. Selective inhibition of mutant Ras protein through covalent binding. Angew. Chem. Int. Ed. Engl. 53, 3777–3779 (2014).

    Article  CAS  Google Scholar 

  17. Basu, D., Richters, A. & Rauh, D. Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg. Med. Chem. 23, 2767–2780 (2015).

    Article  CAS  Google Scholar 

  18. Finlay, M.R.V. et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem. 57, 8249–8267 (2014).

    Article  CAS  Google Scholar 

  19. Barf, T. & Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55, 6243–6262 (2012).

    Article  CAS  Google Scholar 

  20. Lee, C.U. & Grossmann, T.N. Reversible covalent inhibition of a protein target. Angew. Chem. Int. Ed. Engl. 51, 8699–8700 (2012).

    Article  CAS  Google Scholar 

  21. Serafimova, I.M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    Article  CAS  Google Scholar 

  22. Choi, S., Connelly, S., Reixach, N., Wilson, I.A. & Kelly, J.W. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat. Chem. Biol. 6, 133–139 (2010).

    Article  CAS  Google Scholar 

  23. Anscombe, E. et al. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol. 22, 1159–1164 (2015).

    Article  CAS  Google Scholar 

  24. Cal, P.M.S.D. et al. Iminoboronates: a new strategy for reversible protein modification. J. Am. Chem. Soc. 134, 10299–10305 (2012).

    Article  CAS  Google Scholar 

  25. Bandyopadhyay, A., McCarthy, K.A., Kelly, M.A. & Gao, J. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Nat. Commun. 6, 6561 (2015).

    Article  CAS  Google Scholar 

  26. Verdine, G.L. & Walensky, L.D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin. Cancer Res. 13, 7264–7270 (2007).

    Article  CAS  Google Scholar 

  27. Cory, S. & Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656 (2002).

    Article  CAS  Google Scholar 

  28. Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  Google Scholar 

  29. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  Google Scholar 

  30. Wei, G. et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell 21, 547–562 (2012).

    Article  CAS  Google Scholar 

  31. Wenzel, S.S. et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 27, 1381–1390 (2013).

    Article  CAS  Google Scholar 

  32. Yancey, D. et al. BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. PLoS One 8, e74561 (2013).

    Article  CAS  Google Scholar 

  33. Palve, V., Mallick, S., Ghaisas, G., Kannan, S. & Teni, T. Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers. PLoS One 9, e111927 (2014).

    Article  Google Scholar 

  34. Williams, M.M. & Cook, R.S. Bcl-2 family proteins in breast development and cancer: could Mcl-1 targeting overcome therapeutic resistance? Oncotarget 6, 3519–3530 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Ashkenazi, A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov. 7, 1001–1012 (2008).

    Article  CAS  Google Scholar 

  36. Yamanaka, K. et al. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol. Cancer Ther. 4, 1689–1698 (2005).

    Article  CAS  Google Scholar 

  37. Cohen, N.A. et al. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 19, 1175–1186 (2012).

    Article  CAS  Google Scholar 

  38. Muppidi, A. et al. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J. Am. Chem. Soc. 134, 14734–14737 (2012).

    Article  CAS  Google Scholar 

  39. Tanaka, Y. et al. Discovery of potent Mcl-1/Bcl-xL dual inhibitors by using a hybridization strategy based on structural analysis of target proteins. J. Med. Chem. 56, 9635–9645 (2013).

    Article  CAS  Google Scholar 

  40. Friberg, A. et al. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J. Med. Chem. 56, 15–30 (2013).

    Article  CAS  Google Scholar 

  41. AMG 176 First in Human Trial in Subjects With Relapsed or Refractory Multiple Myeloma. https://clinicaltrials.gov/ct2/show/NCT02675452.

  42. Bruncko, M., Song, X., Ding, H., Tao, Z.F. & Kunzer, A.R. 7-nonsubstituted indole mcl-1 inhibitors. WO Patent 2008130970 A1 filed 28 April 2008, and issued 2 March 2016.

  43. Bruncko, M. et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J. Med. Chem. 58, 2180–2194 (2015).

    Article  CAS  Google Scholar 

  44. Belmonte, M.A. et al. Evaluation of Mcl-1 inhibitors in preclinical models of multiple myeloma. Blood 124, 3428 (2014).

    Article  Google Scholar 

  45. Touzeau, C. et al. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia 30, 761–764 (2016).

    Article  CAS  Google Scholar 

  46. Booher, R.N. et al. MCL1 and BCL-xL levels in solid tumors are predictive of dinaciclib-induced apoptosis. PLoS One 9, e108371 (2014).

    Article  Google Scholar 

  47. Cal, P.M.S.D., Frade, R.F.M., Cordeiro, C. & Gois, P.M.P. Reversible lysine modification on proteins by using functionalized boronic acids. Chemistry 21, 8182–8187 (2015).

    Article  CAS  Google Scholar 

  48. Mah, R., Thomas, J.R. & Shafer, C.M. Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett. 24, 33–39 (2014).

    Article  CAS  Google Scholar 

  49. Belmar, J. & Fesik, S.W. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol. Ther. 145, 76–84 (2015).

    Article  CAS  Google Scholar 

  50. Mukherjee, H. et al. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem. Biol. 10, 855–863 (2015).

    Article  CAS  Google Scholar 

  51. Kenny, P.W. & Sadowski, J. Structure modification in chemical databases. in Chemoinformatics in Drug Discovery (ed., T.I. Oprea) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG) 271–285 (2005).

  52. Gasteiger, J., Rudolph, C. & Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Computer Methodology 3, 537–547 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ross for protein mass spectrometry assistance, E. Code and K. Jacques for advice and help for the preparation of Mcl-1 K234A mutant, A. Shapiro and J. Breen for discussion of the kinetic data obtained from time-dependent TR-FRET binding experiments, R. Chen for helpful discussions, and M. Vasbinder for proofreading the manuscript and helpful discussions. We thank the AstraZeneca PostDoc Program for funding this project.

Author information

Authors and Affiliations

Authors

Contributions

G.A., N.P.G., B.A., C.C., A.W.H., M.L.L. and Q.S. designed the covalent inhibitors; G.A. and N.P.G. synthesized all compounds; G.A., M.A.B., P.B.R. and N.S. performed biological experiments. G.A., N.P.G., C.C., M.A.B., P.B.R., M.L.L., A.W.H., B.A., N.S., S.T. and Q.S. interpreted and discussed the results. G.A. and N.P.G. wrote the manuscript. All authors contributed to editing of the manuscript.

Corresponding authors

Correspondence to Neil P Grimster or Qibin Su.

Ethics declarations

Competing interests

All authors are current or former employees of AstraZeneca Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11 and Supplementary Tables 1–4. (PDF 1331 kb)

Supplementary Note

Synthetic Procedures (PDF 849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçay, G., Belmonte, M., Aquila, B. et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol 12, 931–936 (2016). https://doi.org/10.1038/nchembio.2174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2174

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research