Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural determinants of reductive terpene cyclization in iridoid biosynthesis

This article has been updated

Abstract

The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5β-reductase are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of iridoid synthase (ISY).
Figure 2: Structure of ISY (Catharanthus roseus, CrISY).
Figure 3: Open and closed forms of loop Gly150–Val158 in CrISY.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 11 May 2018

    In the version of this article originally published, the grant number given for funding by the European Research Council was R20359 instead of 311363. The error has been corrected in the HTML and PDF versions of the paper.

References

  1. Dobler, S., Petschenka, G. & Pankoke, H. Phytochemistry 72, 1593–1604 (2011).

    Article  CAS  Google Scholar 

  2. Birkett, M.A. & Pickett, J.A. Phytochemistry 62, 651–656 (2003).

    Article  CAS  Google Scholar 

  3. Tundis, R., Loizzo, M.R., Menichini, F., Statti, G.A. & Menichini, F. Mini Rev. Med. Chem. 8, 399–420 (2008).

    Article  CAS  Google Scholar 

  4. Viljoen, A., Mncwangi, N. & Vermaak, I. Curr. Med. Chem. 19, 2104–2127 (2012).

    Article  CAS  Google Scholar 

  5. Dinda, B., Debnath, S. & Banik, R. Chem. Pharm. Bull. (Tokyo) 59, 803–833 (2011).

    Article  CAS  Google Scholar 

  6. Geu-Flores, F. et al. Nature 492, 138–142 (2012).

    Article  CAS  Google Scholar 

  7. O'Connor, S.E. & Maresh, J.J. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  CAS  Google Scholar 

  8. Lindemann, P. Steroids 10.1016/j.steroids.2015.08.007 (14 August 2015).

  9. Kavanagh, K.L., Jörnvall, H., Persson, B. & Oppermann, U. Cell. Mol. Life Sci. 65, 3895–3906 (2008).

    Article  CAS  Google Scholar 

  10. Gärtner, D.E., Wendroth, S. & Seitz, H.U. FEBS Lett. 271, 239–242 (1990).

    Article  Google Scholar 

  11. Caspi, E. & Lewis, D.O. Science 156, 519–520 (1967).

    Article  CAS  Google Scholar 

  12. Bjelic, S. et al. ACS Chem. Biol. 8, 749–757 (2013).

    Article  CAS  Google Scholar 

  13. Kunert, M. et al. ChemBioChem 14, 353–360 (2013).

    Article  CAS  Google Scholar 

  14. Thorn, A. et al. J. Biol. Chem. 283, 17260–17269 (2008).

    Article  CAS  Google Scholar 

  15. Lindner, S., Geu-Flores, F., Bräse, S., Sherden, N.H. & O'Connor, S.E. Chem. Biol. 21, 1452–1456 (2014).

    Article  CAS  Google Scholar 

  16. Garrabou, X., Beck, T. & Hilvert, D. Angew. Chem. Int. Edn Engl. 54, 5609–5612 (2015).

    Article  CAS  Google Scholar 

  17. Rudolph, K., Bauer, P., Schmid, B., Mueller-Uri, F. & Kreis, W. Biochimie 101, 31–38 (2014).

    Article  CAS  Google Scholar 

  18. Winberg, J.O., Brendskag, M.K., Sylte, I., Lindstad, R.I. & McKinley-McKee, J.S. J. Mol. Biol. 294, 601–616 (1999).

    Article  CAS  Google Scholar 

  19. Petersen, J. et al. J. Biomol. Struct. Dyn. 10.1080/07391102.2015.1088797 (12 October 2015).

  20. Lovell, S.C. et al. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  21. Munkert, J. et al. Plant Biol. 10.1111/plb.12361 (14 July 2015).

  22. Munkert, J. et al. Mol. Plant 8, 136–152 (2015).

    Article  CAS  Google Scholar 

  23. Christianson, D.W. Chem. Rev. 106, 3412–3442 (2006).

    Article  CAS  Google Scholar 

  24. Cane, D.E. & Ikeda, H. Acc. Chem. Res. 45, 463–472 (2012).

    Article  CAS  Google Scholar 

  25. Berrow, N.S. et al. Nucleic Acids Res. 35, e45 (2007).

    Article  Google Scholar 

  26. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  27. Evans, P.R. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  28. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  29. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  30. Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Methods Enzymol. 374, 300–321 (2003).

    Article  CAS  Google Scholar 

  31. Joosten, R.P. et al. J. Appl. Crystallogr. 42, 376–384 (2009).

    Article  CAS  Google Scholar 

  32. Painter, J. & Merritt, E.A. J. Appl. Crystallogr. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  33. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  34. Krissinel, E. & Henrick, K. Computational Life Sciences (Springer-Verlag, Berlin, Heidelberg, 2005).

  35. Leaver-Fay, A. et al. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funds were made available by the European Research Council (ERC 311363) and a BBSRC Institute Strategic Programme grant (MET; BB/J004561/1) to S.E.O'C., and an SNF Early Postdoc Mobility Fellowship to H.K. The Diamond Light Source provided access to beamlines I03, I04 and I04-1 (proposal MX9475).

Author information

Authors and Affiliations

Authors

Contributions

L.C., H. K., N.H.S., F.G.-F., and S.E.O'C. designed the project; L.C., H.K., M.O.K., and F.G.-F. performed molecular cloning/enzyme assays; C.E.M.S. assisted with crystallization and X-ray data acquisition; H.K., F.G.-F., and N.H.S. performed chemical synthesis; H.K., L.C., and D.M.L. refined structures; S.E.O'C. supervised the work; H.K. and S.E.O'C. wrote the manuscript.

Corresponding author

Correspondence to Sarah E O'Connor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figures 1–14. (PDF 6518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kries, H., Caputi, L., Stevenson, C. et al. Structural determinants of reductive terpene cyclization in iridoid biosynthesis. Nat Chem Biol 12, 6–8 (2016). https://doi.org/10.1038/nchembio.1955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing