Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Class D β-lactamases do exist in Gram-positive bacteria

Abstract

Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. These enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BPU-1 structure.
Figure 2: Structure-based sequence alignment of Gram-positive class D β-lactamases.
Figure 3: BPU-1 substrate binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

Protein Data Bank

References

  1. Poole, K. Resistance to β-lactam antibiotics. Cell. Mol. Life Sci. 61, 2200–2223 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Waxman, D.J. & Strominger, J.L. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30, 673–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, H., Uehara, T. & Bernhardt, T.G. β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. NY Acad. Sci. 1277, 84–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Ambler, R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci 289, 321–331 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Jaurin, B. & Grundstrom, T. AmpC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78, 4897–4901 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ouellette, M., Bissonnette, L. & Roy, P.H. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 β-lactamase gene. Proc. Natl. Acad. Sci. USA 84, 7378–7382 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kernodle, D.S. in Gram-positive Pathogens (eds. Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. & Rood, J.I.) 609–620 (ASM Press, Washington, D.C., 2000).

  10. Hedges, R.W., Datta, N., Kontomichalou, P. & Smith, J.T. Molecular specificities of R factor-determined β-lactamases: Correlation with plasmid compatibility. J. Bacteriol. 117, 56–62 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sykes, R.B. & Matthew, M. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2, 115–157 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Leonard, D.A., Bonomo, R.A. & Powers, R.A. Class D β-lactamases: a reappraisal after five decades. Acc. Chem. Res. 46, 2407–2415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walther-Rasmussen, J. & Hoiby, N. OXA-type carbapenemases. J. Antimicrob. Chemother. 57, 373–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Poirel, L., Naas, T. & Nordmann, P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob. Agents Chemother. 54, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Antunes, N.T. et al. Class D β-lactamases: are they all carbapenemases? Antimicrob. Agents Chemother. 58, 2119–2125 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Docquier, J.D. et al. Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 16, 540–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Verma, V. et al. Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D β-lactamase from Acinetobacter baumannii. J. Biol. Chem. 286, 37292–37303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colombo, M.-L. et al. The ybxI gene of Bacillus subtilis 168 encodes a class D β-lactamase of low activity. Antimicrob. Agents Chemother. 48, 484–490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Docquier, J.D. et al. Crystal structure of the narrow-spectrum OXA-46 class D β-lactamase: relationship between active-site lysine carbamylation and inhibition by polycarboxylates. Antimicrob. Agents Chemother. 54, 2167–2174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golemi, D. et al. The first structural and mechanistic insights for class D β-lactamases: evidence for a novel catalytic process for turnover of β-lactam antibiotics. J. Am. Chem. Soc. 122, 6132–6133 (2000).

    Article  CAS  Google Scholar 

  21. Kaitany, K.C. et al. Structures of the class D carbapenemases OXA-23 and OXA-146: mechanistic basis of activity against carbapenems, extended-spectrum cephalosporins and aztreonam. Antimicrob. Agents Chemother. 57, 4848–4855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paetzel, M. et al. Crystal structure of the class D β-lactamase OXA-10. Nat. Struct. Biol. 7, 918–925 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Pernot, L. et al. Crystal structures of the class D β-lactamase OXA-13 in the native form and in complex with meropenem. J. Mol. Biol. 310, 859–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Santillana, E., Beceiro, A., Bou, G. & Romero, A. Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc. Natl. Acad. Sci. USA 104, 5354–5359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, C.A. et al. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chem. Biol. 20, 1107–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, C.A., Antunes, N.T., Toth, M. & Vakulenko, S.B. Crystal structure of carbapenemase OXA-58 from Acinetobacter baumannii. Antimicrob. Agents Chemother. 58, 2135–2143 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun, T., Nukaga, M., Mayama, K., Braswell, E.H. & Knox, J.R. Comparison of β-lactamases of classes A and D: 1.5-Å crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci. 12, 82–91 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Golemi, D., Maveyraud, L., Vakulenko, S., Samama, J.P. & Mobashery, S. Critical involvement of a carbamylated lysine in catalytic function of class D β-lactamases. Proc. Natl. Acad. Sci. USA 98, 14280–14285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schneider, K.D. et al. Structures of the class D carbapenemase OXA-24 from Acinetobacter baumanii in complex with doripenem. J. Mol. Biol. 406, 583–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beadle, B.M. & Shoichet, B.K. Structural basis for imipenem inhibition of class C β-lactamases. Antimicrob. Agents Chemother. 46, 3978–3980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ambler, R.P. et al. A standard numbering scheme for the class-A β-lactamases. Biochem. J. 276, 269–270 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marciano, D.C., Brown, N.G. & Palzkill, T. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 β-lactamase. Protein Sci. 18, 2080–2089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giannouli, M. et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. J. Clin. Microbiol. 48, 1223–1230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Curley, K. & Pratt, R.F. The oxyanion hole in serine β-lactamase catalysis: interactions of thiono substrates with the active site. Bioorg. Chem. 28, 338–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Maveyraud, L. et al. Crystal structure of 6α-(hydroxymethyl)penicillanate complexed to the TEM-1 β-lactamase from Escherichia coli: evidence on the mechanism of action of a novel inhibitor designed by a computer-aided process. J. Am. Chem. Soc. 118, 7435–7440 (1996).

    Article  CAS  Google Scholar 

  36. Mourey, L. et al. Inhibition of the NMC-A β-lactamase by a penicillanic acid derivative, and the structural bases for the increase in substrate profile of this antibiotic resistance enzyme. J. Am. Chem. Soc. 120, 9382–9383 (1998).

    Article  CAS  Google Scholar 

  37. Patera, A., Blaszczak, L.C. & Shoichet, B.K. Crystal structures of substrate and inhibitor complexes with AmpC β-lactamase: possible implications for substrate-assisted catalysis. J. Am. Chem. Soc. 122, 10504–10512 (2000).

    Article  CAS  Google Scholar 

  38. Powers, R.A., Caselli, E., Focia, P.J., Prati, F. & Shoichet, B.K. Structures of ceftazidime and its transition-state analogue in complex with AmpC β-lactamase: implications for resistance mutations and inhibitor design. Biochemistry 40, 9207–9214 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Stewart, N.K., Smith, C.A., Frase, H., Black, D.J. & Vakulenko, S.B. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry 54, 588–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Schneider, K.D., Karpen, M.E., Bonomo, R.A., Leonard, D.A. & Powers, R.A. The 1.4 Å crystal structure of the class D β-lactamase OXA-1 complexed with doripenem. Biochemistry 48, 11840–11847 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Thomson, J.M., Distler, A.M., Prati, F. & Bonomo, R.A. Probing active site chemistry in SHV β-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance. J. Biol. Chem. 281, 26734–26744 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Wattam, A.R. et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42, D581–D591 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Toth, M., Smith, C., Frase, H., Mobashery, S. & Vakulenko, S. An antibiotic-resistance enzyme from a deep-sea bacterium. J. Am. Chem. Soc. 132, 816–823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard (Clinical and Laboratory Standards Institute, Wayne, PA, 2009).

  45. Matthews, B.W. Solvent contents of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  PubMed  Google Scholar 

  46. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  47. Evans, P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr. 55, 247–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  52. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Stanford Synchrotron Radiation Lightsource (SSRL) is a national user facility operated by Stanford University and supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the US National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.B.V. and N.T.A. performed the genomic sequence screening and sequence alignments; M.T., N.T.A., N.K.S., M.B. and H.F. designed and performed the microbiological and kinetic experiments and analyzed the resulting data; M.T., N.T.A. and C.A.S. designed and performed the crystallography experiments; C.A.S. collected and analyzed the crystallographic data; S.B.V. and C.A.S. wrote the manuscript.

Corresponding authors

Correspondence to Clyde A Smith or Sergei B Vakulenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–4 and Supplementary Tables 1–3. (PDF 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toth, M., Antunes, N., Stewart, N. et al. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 12, 9–14 (2016). https://doi.org/10.1038/nchembio.1950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1950

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology