Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A carbonate-forming Baeyer-Villiger monooxygenase

Abstract

Despite the remarkable versatility displayed by flavin-dependent monooxygenases (FMOs) in natural product biosynthesis, one notably missing activity is the oxidative generation of carbonate functional groups. We describe a multifunctional Baeyer-Villiger monooxygenase, CcsB, which catalyzes the formation of an in-line carbonate in the macrocyclic portion of cytochalasin E. This study expands the repertoire of activities of FMOs and provides a possible synthetic strategy for transformation of ketones into carbonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytochalasins with different oxidation outcomes in the macrocyclic portion.
Figure 2: Genetic confirmation of CcsB activity.
Figure 3: Reactions catalyzed by CcsB and chemical complementation of ΔccsB-37.

Similar content being viewed by others

References

  1. Huijbers, M.M., Montersino, S., Westphal, A.H., Tischler, D. & van Berkel, W.J. Arch. Biochem. Biophys. 544, 2–17 (2014).

    Article  CAS  Google Scholar 

  2. Walsh, C.T. & Wencewicz, T.A. Nat. Prod. Rep. 30, 175–200 (2013).

    Article  CAS  Google Scholar 

  3. Teufel, R. et al. Nature 503, 552–556 (2013).

    Article  CAS  Google Scholar 

  4. Tsunematsu, Y. et al. Nat. Chem. Biol. 9, 818–825 (2013).

    Article  CAS  Google Scholar 

  5. Francisco, W.A., AbuSoud, H.M., Topgi, R., Baldwin, T.O. & Raushel, F.M. J. Biol. Chem. 271, 104–110 (1996).

    Article  CAS  Google Scholar 

  6. de Gonzalo, G., Mihovilovic, M.D. & Fraaije, M.W. ChemBioChem 11, 2208–2231 (2010).

    Article  CAS  Google Scholar 

  7. Leisch, H., Morley, K. & Lau, P.C.K. Chem. Rev. 111, 4165–4222 (2011).

    Article  CAS  Google Scholar 

  8. Zhang, H., Liu, H.B. & Yue, J.M. Chem. Rev. 114, 883–898 (2014).

    Article  Google Scholar 

  9. Tomoda, H. et al. J Antibiot. (Tokyo) 52, 851–856 (1999).

    Article  CAS  Google Scholar 

  10. Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. J. Nat. Prod. 69, 856–858 (2006).

    Article  CAS  Google Scholar 

  11. Scherlach, K., Boettger, D., Remme, N. & Hertweck, C. Nat. Prod. Rep. 27, 869–886 (2010).

    Article  CAS  Google Scholar 

  12. Vederas, J.C. J. Am. Chem. Soc. 102, 374–376 (1980).

    Article  CAS  Google Scholar 

  13. Qiao, K., Chooi, Y.H. & Tang, Y. Metab. Eng. 13, 723–732 (2011).

    Article  CAS  Google Scholar 

  14. Mirza, I.A. et al. J. Am. Chem. Soc. 131, 8848–8854 (2009).

    Article  CAS  Google Scholar 

  15. Malito, E., Alfieri, A., Fraaije, M.W. & Mattevi, A. Proc. Natl. Acad. Sci. USA 101, 13157–13162 (2004).

    Article  CAS  Google Scholar 

  16. Ishiuchi, K. et al. J. Am. Chem. Soc. 135, 7371–7377 (2013).

    Article  CAS  Google Scholar 

  17. Kimura, Y., Nakajima, H. & Hamasaki, T. Agric. Biol. Chem. 53, 1699–1701 (1989).

    CAS  Google Scholar 

  18. Lin, Z.J. et al. Helv. Chim. Acta 92, 1538–1544 (2009).

    Article  CAS  Google Scholar 

  19. Minato, H. & Matsumoto, M. J. Chem. Soc. Perkin 1 1, 38–45 (1970).

    CAS  PubMed  Google Scholar 

  20. Rubin, M.B. & Inbar, S. J. Org. Chem. 53, 3355–3358 (1988).

    Article  CAS  Google Scholar 

  21. Hong, X., Mejia-Oneto, J.M. & Padwa, A. Tetrahedr. Lett. 47, 8387–8390 (2006).

    Article  CAS  Google Scholar 

  22. Mejía-Oneto, J.M. & Padwa, A. Helv. Chim. Acta 91, 285–302 (2008).

    Article  Google Scholar 

  23. Robert, J.L. & Tamm, C. Helv. Chim. Acta 58, 2501–2504 (1975).

    Article  CAS  Google Scholar 

  24. Frank, B. et al. J. Mol. Biol. 374, 24–38 (2007).

    Article  CAS  Google Scholar 

  25. Tang, M.C., He, H.Y., Zhang, F. & Tang, G.L. ACS Catal. 3, 444–447 (2013).

    Article  CAS  Google Scholar 

  26. Yelton, M.M., Hamer, J.E. & Timberlake, W.E. Proc. Natl. Acad. Sci. USA 81, 1470–1474 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (1R01GM085128 and 1DP1GM106413) to Y.T., the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair in Bioorganic and Medicinal Chemistry to J.C.V. and the US National Science Foundation (NSF) CHE-1059084 to K.N.H. A.P. thanks the Chemistry Biology Interface program (T32GM008496) for support. NMR instrumentation was supported by the NSF equipment grant CHE-1048804. We thank Y.-H. Chooi and N.K. Garg for helpful discussions. We thank S.I. Khan at the University of California–Los Angeles Department of Chemistry and Biochemistry crystallography facility for solving the X-ray structures. We thank D. Li at Chinese Ocean University for providing the standards for 5, 9 and 10. We acknowledge the Extreme Science and Engineering Design Environment program (TG-CHE040013N) for providing high-performance computing resources.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., D.D., J.C.V. and Y.T. developed the hypothesis and designed the study. D.D. performed the isotopic labeling studies in A. clavatus, and J.A.J.T. and D.D. prepared selected substrate analogs. Y.H. performed the compound isolation and characterization. Y.H. performed the in vitro analysis of CcsB functions. A.P. and K.N.H. performed and interpreted the density functional theory calculations. All of the authors analyzed and discussed the results. Y.H., J.C.V. and Y.T. prepared the manuscript.

Corresponding authors

Correspondence to John C Vederas or Yi Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7, Supplementary Figures 1–33 and Supplementary Notes 1–3. (PDF 16669 kb)

Supplementary Data Set 1

CIF file for the crystal structure of cytochalasin Z16 (9), CCDC 970432 (TXT 591 kb)

Supplementary Data Set 2

CIF file for the crystal structure of ketocytochalasin (7), CCDC 970431 (TXT 933 kb)

Supplementary Data Set 3

Checkcif output file for CIF file of 9. (PDF 214 kb)

Supplementary Data Set 4

Checkcif output file for CIF file of 7. (PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Dietrich, D., Xu, W. et al. A carbonate-forming Baeyer-Villiger monooxygenase. Nat Chem Biol 10, 552–554 (2014). https://doi.org/10.1038/nchembio.1527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing