Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-stage directed self-assembly of a cyclic [3]catenane

Subjects

Abstract

Interlocked molecules possess properties and functions that depend upon their intricate connectivity. In addition to the topologically trivial rotaxanes, whose structures may be captured by a planar graph, the topologically non-trivial knots and catenanes represent some of chemistry's most challenging synthetic targets because of the three-dimensional assembly necessary for their construction. Here we report the synthesis of a cyclic [3]catenane, which consists of three mutually interpenetrating rings, via an unusual synthetic route. Five distinct building blocks self-assemble into a heteroleptic triangular framework composed of two joined FeII3L3 circular helicates. Subcomponent exchange then enables specific points in the framework to be linked together to generate the cyclic [3]catenane product. Our method represents an advance both in the intricacy of the metal-templated self-assembly procedure and in the use of selective imine exchange to generate a topologically complex product.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and X-ray crystal structure of mixed-ligand circular double helicate 1.
Figure 2: Subcomponent substitution of 1 with diamine C yields cyclic [3]catenane 2, shown as the crystal structure.
Figure 3: Views of cyclic [3]catenane 2.
Figure 4: LC-MS analysis of demetallated and reduced catenane 3.

References

  1. Evans, N. H. & Beer, P. D. Progress in the synthesis and exploitation of catenanes since the millennium. Chem. Soc. Rev. 43, 4658–4683 (2014).

    Article  CAS  Google Scholar 

  2. Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  Google Scholar 

  3. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  4. Ponnuswamy, N., Cougnon, F. B., Clough, J. M., Pantos, G. D. & Sanders, J. K. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  Google Scholar 

  5. van Dongen, S. F., Cantekin, S., Elemans, J. A., Rowan, A. E. & Nolte, R. J. Functional interlocked systems. Chem. Soc. Rev. 43, 99–122 (2014).

    Article  CAS  Google Scholar 

  6. Liang, C. Z. & Mislow, K. Topological chirality and achirality of links. J. Math. Chem. 18, 1–24 (1995).

    Article  CAS  Google Scholar 

  7. Dean, F. B. & Cozzarelli, N. R. Mechanism of strand passage by Escherichia coli topoisomerase I. The role of the required nick in catenation and knotting of duplex DNA. J. Biol. Chem. 260, 4984–4994 (1985).

    CAS  PubMed  Google Scholar 

  8. Takusagawa, F. & Kamitori, S. A real knot in protein. J. Am. Chem. Soc. 118, 8945–8946 (1996).

    Article  CAS  Google Scholar 

  9. Rosengren, K. J. et al. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J. Am. Chem. Soc. 125, 12464–12474 (2003).

    Article  CAS  Google Scholar 

  10. Duda, R. L. Protein chainmail: catenated protein in viral capsids. Cell 94, 55–60 (1998).

    Article  CAS  Google Scholar 

  11. Quake, S. R. Topological effects of knots in polymers. Phys. Rev. Lett. 73, 3317–3320 (1994).

    Article  CAS  Google Scholar 

  12. Saitta, A. M., Soper, P. D., Wasserman, E. & Klein, M. L. Influence of a knot on the strength of a polymer strand. Nature 399, 46–48 (1999).

    Article  CAS  Google Scholar 

  13. Sauvage, J. P. Interlacing molecular threads on transition-metals—catenands, catenates, and knots. Acc. Chem. Res. 23, 319–327 (1990).

    Article  CAS  Google Scholar 

  14. Ashton, P. R. et al. A [2]catenane made to order. Angew. Chem. Int. Ed. Engl. 28, 1396–1399 (1989).

    Article  Google Scholar 

  15. Hunter, C. A. Synthesis and structure elucidation of a new [2]-catenane. J. Am. Chem. Soc. 114, 5303–5311 (1992).

    Article  CAS  Google Scholar 

  16. Nierengarten, J. F., Dietrichbuchecker, C. O. & Sauvage, J. P. Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 116, 375–376 (1994).

    Article  CAS  Google Scholar 

  17. Mohr, B., Weck, M., Sauvage, J. P. & Grubbs, R. H. High-yield synthesis of [2]catenanes by intramolecular ring-closing metathesis. Angew. Chem. Int. Ed. Engl. 36, 1308–1310 (1997).

    Article  CAS  Google Scholar 

  18. Lincheneau, C., Jean-Denis, B. & Gunnlaugsson, T. Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. Chem. Commun. 50, 2857–2860 (2014).

    Article  CAS  Google Scholar 

  19. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A star of David catenane. Nature Chem. 6, 978–982 (2014).

    Article  CAS  Google Scholar 

  20. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  21. Ayme, J. F. et al. A synthetic molecular pentafoil knot. Nature Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  22. Hasenknopf, B., Lehn, J. M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840 (1996).

    Article  CAS  Google Scholar 

  23. Allen, K. E. et al. Head-to-tail and heteroleptic pentanuclear circular helicates. Angew. Chem. Int. Ed. 49, 6655–6658 (2010).

    Article  CAS  Google Scholar 

  24. Safont-Sempere, M. M., Fernandez, G. & Wurthner, F. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011).

    Article  CAS  Google Scholar 

  25. Ayme, J. F., Beves, J. E., Campbell, C. J. & Leigh, D. A. The self-sorting behavior of circular helicates and molecular knots and links. Angew. Chem. Int. Ed. 53, 7823–7827 (2014).

    Article  CAS  Google Scholar 

  26. Kramer, R., Lehn, J. M. & Marquis-Rigault, A. Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. Proc. Natl Acad. Sci. USA 90, 5394–5398 (1993).

    Article  CAS  Google Scholar 

  27. Riddell, I. A. et al. Five discrete multinuclear metal–organic assemblies from one ligand: deciphering the effects of different templates. J. Am. Chem. Soc. 135, 2723–2733 (2013).

    Article  CAS  Google Scholar 

  28. Sarma, R. J. & Nitschke, J. R. Self-assembly in systems of subcomponents: simple rules, subtle consequences. Angew. Chem. Int. Ed. 47, 377–380 (2008).

    Article  CAS  Google Scholar 

  29. De, S., Mahata, K. & Schmittel, M. Metal-coordination-driven dynamic heteroleptic architectures. Chem. Soc. Rev. 39, 1555–1575 (2010).

    Article  CAS  Google Scholar 

  30. Schultz, D. & Nitschke, J. R. Designing multistep transformations using the Hammett equation: imine exchange on a copper(I) template. J. Am. Chem. Soc. 128, 9887–9892 (2006).

    Article  CAS  Google Scholar 

  31. Tung, S. T., Lai, C. C., Liu, Y. H., Peng, S. M. & Chiu, S. H. Synthesis of a [2]catenane from the sodium ion templated orthogonal arrangement of two diethylene glycol chains. Angew. Chem. Int. Ed. 52, 13269–13272 (2013).

    Article  CAS  Google Scholar 

  32. Peters, A. J., Chichak, K. S., Cantrill, S. J. & Stoddart, J. F. Nanoscale Borromean links for real. Chem. Commun. 3394–3396 (2005).

  33. Chung, M.-K., Severin, K., Lee, S. J., Waters, M. L. & Gagné, M. R. Constitutionally selective amplification of multicomponent 84-membered macrocyclic hosts for (−)-cytidine·H+. Chem. Sci. 2, 744–747 (2011).

    Article  CAS  Google Scholar 

  34. Dietrich-Buchecker, C., Leize, E., Nierengarten, J.-F., Sauvage, J.-P. & Van Dorsselaer, A. Singly and doubly interlocked [2]-catenanes: influence of the degree of entanglement on chemical stability as estimated by fast atom bombardment (FAB) and electrospray ionization (ESI) mass spectrometries (MS). J. Chem. Soc. Chem. Commun. 2257–2258 (1994).

  35. Zhu, R., Lübben, J., Dittrich, B. & Clever, G. H. Stepwise halide-triggered double and triple catenation of self-assembled coordination cages. Angew. Chem. Int. Ed. 54, 2796–2800 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and a Marie Curie fellowship for J.J.H. (ITN-2010–264645). The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984 and MT8464).

Author information

Authors and Affiliations

Authors

Contributions

J.R.N. and C.S.W. conceived and designed the experiments. C.S.W. performed the experiments and analysed the data. T.K.R. and J.J.H. collected the X-ray data and refined the structures. A.M.B. and C.S.W. carried out the HPLC analysis. All authors discussed the results and edited the manuscript

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2284 kb)

Supplementary information

Crystallographic data for compound [1Cl•;Br6]•5ClO4•0.5FeBr4•10CH3CN•H2O. (CIF 14026 kb)

Supplementary information

Crystallographic data for compound [1Me•Cl6]•6ClO4•5CH3CN. (CIF 118 kb)

Supplementary information

Crystallographic data for compound [1OMe•(SCN)6]•4PF6. (CIF 5600 kb)

Supplementary information

Crystallographic data for compound [2]•6Br•0.75KBr•6.25H2O. (CIF 17958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, C., Ronson, T., Belenguer, A. et al. Two-stage directed self-assembly of a cyclic [3]catenane. Nature Chem 7, 354–358 (2015). https://doi.org/10.1038/nchem.2205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing