Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions

Abstract

Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uniform lenticular platelet micelles of controlled area by CDSA in 2D.
Figure 2: Growth of concentric lenticular block co-micelles in 2D.
Figure 3: Platelet growth from cylindrical initiators.
Figure 4: Growth of double-headed spear-like micelles.
Figure 5: Non-centrosymmetric single-headed spear-like micelles.

Similar content being viewed by others

References

  1. Cui, H. G., Chen, Z. Y., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  2. Xia, Y., Olsen, B. D., Kornfield, J. A. & Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side-chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009).

    Article  CAS  Google Scholar 

  3. Hayward, R. C. & Pochan, D. J. Tailored assemblies of block copolymers in solution: it is all about the process. Macromolecules 43, 3577–3584 (2010).

    Article  CAS  Google Scholar 

  4. O'Reilly, R. K., Hawker, C. J. & Wooley, K. L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068–1083 (2006).

    Article  CAS  Google Scholar 

  5. Zhang, S. Y. et al. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J. Am. Chem. Soc. 134, 18467–18474 (2012).

    Article  CAS  Google Scholar 

  6. Dupont, J. & Liu, G. ABC triblock copolymer hamburger-like micelles, segmented cylinders, and Janus particles. Soft Matter 6, 3654–3661 (2010).

    Article  CAS  Google Scholar 

  7. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  Google Scholar 

  8. Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nature Commun. 5, 3372 (2014).

    Article  Google Scholar 

  9. Gröschel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nature Commun. 3, 710 (2012).

    Article  Google Scholar 

  10. Walther, A., André, X., Drechsler, M., Abetz, V. & Müller, A. H. E. Janus discs. J. Am. Chem. Soc. 129, 6187–6198 (2007).

    Article  CAS  Google Scholar 

  11. Zhu, J. H. et al. Disk–cylinder and disk–sphere nanoparticles via a block copolymer blend solution construction. Nature Commun. 4, 2297 (2013).

    Article  Google Scholar 

  12. He, W. N. & Xu, J. T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37, 1350–1400 (2012).

    Article  CAS  Google Scholar 

  13. Petzetakis, N., Dove, A. P. & O'Reilly, R. K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2, 955–960 (2011).

    Article  CAS  Google Scholar 

  14. Patra, S. K. et al. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J. Am. Chem. Soc. 133, 8842–8845 (2011).

    Article  CAS  Google Scholar 

  15. Schmelz, J., Schedl, A. E., Steinlein, C., Manners, I. & Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 134, 14217–14225 (2012).

    Article  CAS  Google Scholar 

  16. Wang, X. S. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  17. Kim, Y. J. et al. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. J. Am. Chem. Soc. 136, 2767–2774 (2014).

    Article  CAS  Google Scholar 

  18. Lee, E. et al. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. J. Am. Chem. Soc. 133, 10390–10393 (2011).

    Article  CAS  Google Scholar 

  19. Yusoff, S. F. M., Hsiao, M. S., Schacher, F. H., Winnik, M. A. & Manners, I. Formation of lenticular platelet micelles via the interplay of crystallization and chain stretching: solution self-assembly of poly(ferrocenyldimethylsilane)-block-poly(2-vinylpyridine) with a crystallizable core-forming metalloblock. Macromolecules 45, 3883–3891 (2012).

    Article  Google Scholar 

  20. Soto, A. P., Gilroy, J. B., Winnik, M. A. & Manners, I. Pointed-oval-shaped micelles from crystalline-coil block copolymers by crystallization-driven living self-assembly. Angew. Chem. Int. Ed. 49, 8220–8223 (2010).

    Article  Google Scholar 

  21. Molev, G. et al. Organometallic–polypeptide diblock copolymers: synthesis by Diels–Alder coupling and crystallization-driven self-assembly to uniform truncated elliptical lamellae. Macromolecules 47, 2604–2615 (2014).

    Article  CAS  Google Scholar 

  22. Cao, L., Manners, I. & Winnik, M. A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: solution self-assembly of coil-crystalline poly(isoprene-block-ferrocenylsilane). Macromolecules 35, 8258–8260 (2002).

    Article  CAS  Google Scholar 

  23. He, F., Gädt, T., Manners, I. & Winnik, M. A. Fluorescent ‘barcode’ multiblock co-micelles via the living self-assembly of di- and triblock copolymers with a crystalline core-forming metalloblock. J. Am. Chem. Soc. 133, 9095–9103 (2011).

    Article  CAS  Google Scholar 

  24. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nature Chem. 6, 188–195 (2014).

    Article  CAS  Google Scholar 

  25. Xu, J. J., Ma, Y., Hu, W. B., Rehahn, M. & Reiter, G. Cloning polymer single crystals through self-seeding. Nature Mater. 8, 348–353 (2009).

    Article  CAS  Google Scholar 

  26. Chen, W. Y. et al. ‘Chemically shielded’ poly(ethylene oxide) single crystal growth and construction of channel-wire arrays with chemical and geometric recognitions on a submicrometer scale. Macromolecules 37, 5292–5299 (2004).

    Article  CAS  Google Scholar 

  27. Van Horn, R. M. et al. Solution crystallization behavior of crystalline–crystalline diblock copolymers of poly(ethylene oxide)-block-poly(ɛ-caprolactone). Macromolecules 43, 6113–6119 (2010).

    Article  CAS  Google Scholar 

  28. Yang, P. & Han, Y. Microphase-separated brushes on square platelets in PS-b-PEO thin films. Macromol. Rapid. Comm. 30, 1509–1514 (2009).

    Article  CAS  Google Scholar 

  29. Huang, W. H., Luo, C. X., Wang, H. F. & Han, Y. C. Cylinder-to-rod-to-sphere evolution of complex micelles in solution and their corresponding solvent-induced crystallization process. Polym. Int. 59, 1064–1070 (2010).

    CAS  Google Scholar 

  30. Gomez, E. D. et al. Platelet self-assembly of an amphiphilic A–B–C–A tetrablock copolymer in pure water. Macromolecules 38, 3567–3570 (2005).

    Article  CAS  Google Scholar 

  31. Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012).

    Article  CAS  Google Scholar 

  32. Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

    Article  CAS  Google Scholar 

  33. Gournis, D. & Floudas, G. ‘Hairy’ plates: poly(ethylene oxide)-b-polyisoprene copolymers in the presence of laponite clay. Chem. Mater. 16, 1686–1692 (2004).

    Article  CAS  Google Scholar 

  34. Sinturel, C., Vayer, M., Erre, R. & Amenitsch, H. Thermal induced mobility of self-assembled platelets of polyethylene-block-poly(ethylene oxide) in liquid precursors of unsaturated polyester thermoset. Eur. Polym. J. 45, 2505–2512 (2009).

    Article  CAS  Google Scholar 

  35. Yu, B., Jiang, X. S. & Yin, J. Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform for metal nanoparticles. Chem. Commun. 49, 603–605 (2013).

    Article  CAS  Google Scholar 

  36. Li, B., Wang, B. B., Ferrier, R. C. M. & Li, C. Y. Programmable nanoparticle assembly via polymer single crystals. Macromolecules 42, 9394–9399 (2009).

    Article  CAS  Google Scholar 

  37. Wang, J., Zhu, W., Peng, B. & Chen, Y. M. A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer 54, 6760–6767 (2013).

    Article  CAS  Google Scholar 

  38. Guérin, G., Wang, H., Manners, I. & Winnik, M. A. Fragmentation of fiberlike structures: sonication studies of cylindrical block copolymer micelles and behavioral comparisons to biological fibrils. J. Am. Chem. Soc. 130, 14763–14771 (2008).

    Article  Google Scholar 

  39. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nature Chem. 2, 566–570 (2010).

    Article  CAS  Google Scholar 

  40. Gädt, T., Ieong, N. S., Cambridge, G., Winnik, M. A. & Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nature Mater. 8, 144–150 (2009).

    Article  Google Scholar 

  41. Lunn, D. J. et al. Controlled thiol-ene functionalisation of polyferrocenylsilane-b-polyvinylsiloxane copolymers. Macromol. Chem. Phys. 214, 2813–2820 (2013).

    Article  CAS  Google Scholar 

  42. Bañuelos, J. et al. New 8-amino-BODIPY derivatives: surpassing laser dyes at blue-edge wavelengths. Chem. Eur. J. 17, 7261–7270 (2011).

    Article  Google Scholar 

  43. Loudet, A. & Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 107, 4891–4932 (2007).

    Article  CAS  Google Scholar 

  44. Walther, A. et al. Self-assembly of Janus cylinders into hierarchical superstructures. J. Am. Chem. Soc. 131, 4720–4728 (2009).

    Article  CAS  Google Scholar 

  45. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    Article  CAS  Google Scholar 

  46. Ni, Y. Z., Rulkens, R. & Manners, I. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J. Am. Chem. Soc. 118, 4102–4114 (1996).

    Article  CAS  Google Scholar 

  47. Lickiss, P. D., Redhouse, A. D., Thompson, R. J., Stańczyk, W. A. & Rózga, K. The crystal-structure of (HOMe2Si)2O. J. Organomet. Chem. 453, 13–16 (1993).

    Article  CAS  Google Scholar 

  48. Chojnowski, J. & Rózga, K. Synthesis of linear polysiloxanes with electron-donating organophosphorus pendant groups by kinetically controlled ring-opening polymerization. J. Inorg. Organomet. Polym. 2, 297–317 (1992).

    Article  CAS  Google Scholar 

  49. Gießler, K., Griesser, H., Göhringer, D., Sabirov, T. & Richert, C. Synthesis of 3′-BODIPY-labeled active esters of nucleotides and a chemical primer extension assay on beads. Eur. J. Org. Chem. 2010, 3611–3620 (2010).

    Article  Google Scholar 

  50. Goud, T. V., Tutar, A. & Biellmann, J-F. Synthesis of 8-heteroatom-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dyes (BODIPY). Tetrahedron 62, 5084–5091 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.M.H. and P.A.R. are grateful to the European Union (EU) for Marie Curie Postdoctoral Fellowships. C.E.B. thanks the Bristol Chemical Synthesis Centre for Doctoral Training, funded by the Engineering and Physical Sciences Research Council, for a PhD studentship. M.E.R. thanks the EU for support. M.A.W. thanks the Natural Sciences and Engineering Research Council of Canada for financial support. I.M. thanks the EU for a European Research Council Advanced Investigator Grant. Correspondence and requests for materials should be addressed to M.A.W. (mwinnik@chem.utoronto.ca) or I.M. (ian.manners@bristol.ac.uk). We also thank the Wolfson Bioimaging Facility at the University of Bristol for the use of confocal microscopy facilities, and Prof. A.P. Davis for the use of a fluorescence spectrometer.

Author information

Authors and Affiliations

Authors

Contributions

Z.M.H., P.A.R. and I.M devised the project. Z.M.H, C.E.B., M.E.R. and P.A.R. carried out the experiments. Z.M.H., C.E.B. and I.M. wrote the manuscript with input from M.A.W. The project was supervised by I.M. with input from M.A.W.

Corresponding authors

Correspondence to Mitchell A. Winnik or Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, Z., Boott, C., Robinson, M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nature Chem 6, 893–898 (2014). https://doi.org/10.1038/nchem.2038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing