Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

Abstract

In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constable–Cremer relation for HCl oxidation over RuO2/SnO2-Al2O3.
Figure 2: Schematic representation of the RuO2(110) surface.
Figure 3: TAP experiments identifying the role of surface oxygen.
Figure 4: In situ PGAA experiments evaluating the role of surface Cl.
Figure 5: DFT-based microkinetic modelling of the Deacon reaction over RuO2(110) validates the effect of coverage in the compensation.

Similar content being viewed by others

References

  1. Ertl, G., Knötzinger, H., Schüth, F. & Weitkamp J. (eds) Handbook of Heterogeneous Catalysis (Wiley-VCH, 2008).

  2. Constable, F. H. The mechanism of catalytic decomposition. Proc. R. Soc. Lond. A 108, 355–378 (1925).

    Article  CAS  Google Scholar 

  3. Cremer, E. The compensation effect in heterogeneous catalysis. Adv. Catal. 7, 75–91 (1955).

    CAS  Google Scholar 

  4. Wilson, M. C. & Galwey, A. K. Compensation effect in heterogeneous catalytic reactions including hydrocarbon formation on clays. Nature 243, 402–404 (1973).

    Article  CAS  Google Scholar 

  5. Bond, G. C., Keane, M. A., Kral, H. & Lercher, J. A. Compensation phenomena in heterogeneous catalysis: general principles and a possible explanation. Catal. Rev. Sci. Eng. 42, 323–383 (2000).

    Article  CAS  Google Scholar 

  6. Hibi, T., Nishida, H. & Abekawa, H. Process for producing chlorine. US patent 5,871,707 (1999).

  7. Hibi, T. et al. Process for producing chlorine. European patent EP936184 (1999).

  8. Wolf, A., Mleczko, L., Schlüter, O. F. & Schubert, S. Method for producing chlorine by gas phase oxidation. European patent EP2026905 ( 2006).

  9. Wolf, A., Mleczko, L., Schubert, S. & Schlüter, O. F. Method for producing chlorine by gas phase oxidation. European patent EP2027063 ( 2006).

  10. Seki, K. Development of RuO2/rutile-TiO2 catalyst for industrial HCl oxidation process. Catal. Surv. Asia 14, 168–175 (2010).

    Article  CAS  Google Scholar 

  11. Mondelli, C., Amrute, A. P., Schmidt, T. & Pérez-Ramírez, J. Shaped RuO2/SnO2-Al2O3 catalyst for large-scale stable Cl2 production by HCl oxidation. ChemCatChem. 3, 657–660 (2011).

    Article  CAS  Google Scholar 

  12. Liu, L. & Guo, Q. X. Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem. Rev. 101, 673–695 (2001).

    Article  CAS  Google Scholar 

  13. Bligaard, T. et al. On the compensation effect in heterogeneous catalysis. J. Phys. Chem. B 107, 9325–9331 (2003).

    Article  CAS  Google Scholar 

  14. Lynggaard, H., Andreasen, A., Stegelmann, C. & Soltze, P. Analysis of simple kinetic models in heterogeneous catalysis. Prog. Surf. Sci. 77, 71–137 (2004).

    Article  CAS  Google Scholar 

  15. Kang, H. C., Jachimowski, T. A. & Weinberg, W. H. Role of local configurations in a Langmuir–Hinshelwood surface reaction: kinetics and compensation. J. Chem. Phys. 93, 1418–1429 (1990).

    Article  CAS  Google Scholar 

  16. Chorkendorff, I. & Niemansverdriet, J. W. in Concepts of Modern Catalysis and Kinetics Ch. 2 (Wiley-VCH, 2003).

  17. Temel, B., Meskine, H., Reuter, K., Scheffler, M. & Metiu, H. Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions. J. Chem. Phys. 126, 204711 (2007).

    Article  Google Scholar 

  18. Atkins, P. & de Paula, J. Atkins’ Physical Chemistry 8th edn (Oxford Univ. Press, New York, 2006).

  19. Laidler, K. J. Chemical Kinetics 3rd edn (Prentice Hall, 1987).

  20. Bond, G. C. Rosa, F. C. & Short, E. L. Kinetics of hydrolysis of carbon tetrachloride by acidic solids. Appl. Catal. A. Gen. 329, 46–57 (2007).

    Article  CAS  Google Scholar 

  21. Temkin, M. Relation between the apparent and the true activation energy of heterogeneous reactions. Acta Physicochim. URSS 2, 313–316 (1935).

    CAS  Google Scholar 

  22. Yelon, A., Movaghar, B. & Crandall, R. S. Multi-excitation entropy: its role in thermodynamics and kinetics. Rep. Prog. Phys. 69, 1156–1194 (2006) and references therein.

    Article  Google Scholar 

  23. Estrup, P. J., Greene, E. F., Cardillo, M. J. & Tully, J. C. Influence of surface phase transitions on desorption kinetics: the compensation effect. J. Phys. Chem. 90, 4099–4104 (1986).

    Article  CAS  Google Scholar 

  24. Crihan, D. et al. Stable Deacon process for HCl oxidation over RuO2 . Angew. Chem. Int. Ed. 47, 2131–2134 (2008).

    Article  CAS  Google Scholar 

  25. Zweidinger, S. et al. Reaction mechanism of the oxidation of HCl over RuO2(110). J. Phys Chem. C 112, 9966–9969 (2008).

    Article  CAS  Google Scholar 

  26. López, N., Gómez-Segura, J., Marín, R. P. & Pérez-Ramírez, J. Mechanism of HCl oxidation (Deacon process) over RuO2 . J. Catal. 255, 29–39 (2008).

    Article  Google Scholar 

  27. Studt, F. et al. Volcano relation for the Deacon process over transition-metal oxides. ChemCatChem 2, 98–102 (2010).

    Article  CAS  Google Scholar 

  28. Hevia, M. A. G., Amrute, A. P., Schmidt, T. & Pérez-Ramírez, J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. J. Catal. 276, 141–151 (2010).

    Article  CAS  Google Scholar 

  29. Teschner, D. et al. An integrated approach to Deacon chemistry on RuO2-based catalysts. J. Catal. 285, 273–284 (2012).

    Article  CAS  Google Scholar 

  30. Pérez-Ramírez, J. & Kondratenko, E. V. Evolution, achievements, and perspectives of the TAP technique. Catal. Today 121, 160–169 (2007).

    Article  Google Scholar 

  31. Gleaves, J. T., Yablonsky, G., Zheng, X. L., Fushimi, R. & Mills, P. L. Temporal analysis of products (TAP)—recent advances in technology for kinetic analysis of multi-component catalysts. J. Mol. Catal. A 315, 108–134 (2010).

    Article  CAS  Google Scholar 

  32. Revay, Z. et al. In situ determination of hydrogen inside a catalytic reactor using prompt γ activation analysis. Anal. Chem. 80, 6066–6071 (2008).

    Article  CAS  Google Scholar 

  33. Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).

    Article  CAS  Google Scholar 

  34. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  36. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integration. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from ETH Zurich, BMBF Project 033R018A, Bayer MaterialScience, the ICIQ Foundation, MICINN (CTQ2009-07753/BQU), BSC-RES, the EU FP7 NMI3 Access Programme, a NAP VENEUS grant (OMFB-00184/2006) and the cooperation project between the Fritz-Haber Institute and the former Institute of Isotopes founded by the MPG. K. Honkala is thanked for valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

H.S and R.S. carried out and evaluated catalytic experiments to derive the Constable–Cremer relation. M.G.H. and J.P.R. performed and evaluated the TAP measurements. G.N.L. and N.L. carried out DFT calculations, microkinetic simulations and model system analysis. D.T., R.F., A.K.G. and L.Sz. performed and evaluated PGAA measurements. R.S. provided valuable suggestions for interpreting the results. D.T., J.P.R. and N.L. contributed to writing the manuscript.

Corresponding authors

Correspondence to Detre Teschner or Núria López.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 813 kb)

Supplementary information

Supplementary movie 1 (MP4 28981 kb)

Supplementary information

Supplementary movie 2 (MP4 28672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teschner, D., Novell-Leruth, G., Farra, R. et al. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nature Chem 4, 739–745 (2012). https://doi.org/10.1038/nchem.1411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing