Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts

Abstract

Hydrogen spillover involves the migration of H atom equivalents from metal nanoparticles to a support. While well documented, H spillover is poorly understood and largely unquantified. Here we measure weak, reversible H2 adsorption on Au/TiO2 catalysts, and extract the surface concentration of spilled-over hydrogen. The spillover species (H*) is best described as a loosely coupled proton/electron pair distributed across the titania surface hydroxyls. In stark contrast to traditional gas adsorption systems, H* adsorption increases with temperature. This unexpected adsorption behaviour has two origins. First, entropically favourable adsorption results from high proton mobility and configurational surface entropy. Second, the number of spillover sites increases with temperature, due to increasing hydroxyl acid–base equilibrium constants. Increased H* adsorption correlates with the associated changes in titania surface zwitterion concentration. This study provides a quantitative assessment of how hydroxyl surface chemistry impacts spillover thermodynamics, and contributes to the general understanding of spillover phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature and particle size effects on H2 adsorption.
Fig. 2: Au loading effects on H2 adsorption and spillover.
Fig. 3: Schematic showing H2 adsorption at the MSI.
Fig. 4: H* adsorption thermodynamics.
Fig. 5: Entropy diagram for H* adsorption at 25 °C.
Fig. 6: Entropic contributions to hydrogen spillover energetics.
Fig. 7: DFT model for H* adsorbed on rutile (110) and anatase (001).
Fig. 8: Temperature dependence of TiO2 surface hydroxyl chemistry.

Similar content being viewed by others

Data availability

Raw data are available through ScholarSphere, Penn State’s open access repository at https://scholarsphere.psu.edu/ or available from the authors upon reasonable request. The atomic coordinates of the models in DFT calculations of charge density difference and spin density are provided in Supplementary Data 1.

References

  1. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Hülsey, M. J., Fung, V., Hou, X., Wu, J. & Yan, N. Hydrogen spillover and its relation to hydrogenation: observations on structurally defined single-atom sites. Angew. Chem. Int. Ed. 61, e202208237 (2022).

    Article  Google Scholar 

  3. Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Joo, J. B. et al. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2. Proc. Natl Acad. Sci. USA 111, 7942–7947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Primo, A., Corma, A. & García, H. Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Panayotov, D. A. & Morris, J. R. Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surf. Sci. Rep. 71, 77–271 (2016).

    Article  CAS  Google Scholar 

  7. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, Y. et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 9, 2752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. https://doi.org/10.1038/ncomms9550 (2015).

  10. Darby, M. T., Stamatakis, M., Michaelides, A. & Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor, C. R. et al. Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proc. Natl Acad. Sci. USA 117, 22657–22664 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mori, K. et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 12, 3884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Y. & Yang, R. T. Significantly enhanced hydrogen storage in metal–organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Kumaravel, V., Mathew, S., Bartlett, J. & Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl. Catal. B 244, 1021–1064 (2019).

    Article  CAS  Google Scholar 

  16. Sampath, A. et al. Spectroscopic evidence for the involvement of interfacial sites in O–O bond activation over gold catalysts. ACS Catal. 12, 9549–9558 (2022).

    Article  CAS  Google Scholar 

  17. Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Frey, H., Beck, A., Huang, X., Bokhoven, J. A. V. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Rolison, D. R. et al. Power of aerogel platforms to explore mesoscale transport in catalysis. ACS Appl. Mater. Interfaces 12, 41277–41287 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Sankar, M. et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 120, 3890–3938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, W. et al. In situ manipulation of the active Au–TiO2 interface with atomic precision during CO oxidation. Science 371, 517–521 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hashmi, S. K. & Hutchings Graham, J. Gold catalysis. Angew. Chem. Int. Ed. Engl. 45, 7896–7936 (2006).

    Article  PubMed  Google Scholar 

  26. Zhang, Y., Cui, X., Shi, F. & Deng, Y. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112, 2467–2505 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ojeda, M. & Iglesia, E. Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures. Angew. Chem. Int. Ed. 48, 4800–4803 (2009).

    Article  CAS  Google Scholar 

  28. Rodriguez, J. A. et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water–gas shift reaction. Science 318, 1757–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Shekhar, M. et al. Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 4700–4708 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Mitsudome, T. & Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green. Chem. 15, 2636–2654 (2013).

    Article  CAS  Google Scholar 

  31. Sault, A. G., Madix, R. J. & Campbell, C. T. Adsorption of oxygen and hydrogen on gold(110)-(1 × 2). Surf. Sci. 169, 347 (1986).

    Article  CAS  Google Scholar 

  32. Whittaker, T. et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal–support interface. J. Am. Chem. Soc. 140, 16469–16487 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Sravan Kumar, K. B., Whittaker, T. N., Peterson, C., Grabow, L. C. & Chandler, B. D. Water poisons H2 activation at the Au–TiO2 interface by slowing proton and electron transfer between Au and titania. J. Am. Chem. Soc. 142, 5760–5772 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Mahdavi-Shakib, A., Rich, L. C., Whittaker, T. N. & Chandler, B. D. Hydrogen adsorption at the Au/TiO2 interface: quantitative determination and spectroscopic signature of the reactive interface hydroxyl groups at the active site. ACS Catal. 11, 15194–15202 (2021).

    Article  CAS  Google Scholar 

  35. Mahdavi-Shakib, A. et al. Kinetics of H2 adsorption at the metal–support interface of Au/TiO2 catalysts probed by broad background IR absorbance. Angew. Chem. Int. Ed. 60, 7735–7743 (2021).

    Article  CAS  Google Scholar 

  36. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Rekharsky, M., Inoue, Y., Tobey, S., Metzger, A. & Anslyn, E. Ion-pairing molecular recognition in water: aggregation at low concentrations that is entropy-driven. J. Am. Chem. Soc. 124, 14959–14967 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Hartshorn, H., Pursell, C. J. & Chandler, B. D. Adsorption of CO on supported gold nanoparticle catalysts: a comparative study. J. Phys. Chem. C 113, 10718–10725 (2009).

    Article  CAS  Google Scholar 

  39. Campbell, C. T., Sprowl, L. H. & Árnadóttir, L. Equilibrium constants and rate constants for adsorbates: two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J. Phys. Chem. C 120, 10283–10297 (2016).

    Article  CAS  Google Scholar 

  40. Campbell, C. T. & Sellers, J. R. V. The entropies of adsorbed molecules. J. Am. Chem. Soc. 134, 18109–18115 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, C. T. & Sellers, J. R. V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem. Rev. 113, 4106–4135 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Savara, A., Schmidt, C. M., Geiger, F. M. & Weitz, E. Adsorption entropies and enthalpies and their implications for adsorbate dynamics. J. Phys. Chem. C 113, 2806–2815 (2009).

    Article  CAS  Google Scholar 

  43. Collinge, G. et al. Effect of collective dynamics and anharmonicity on entropy in heterogeneous catalysis: building the case for advanced molecular simulations. ACS Catal. 10, 9236–9260 (2020).

    Article  CAS  Google Scholar 

  44. Vannice, M. A., Hyun, S. H., Kalpakci, B. & Liauh, W. C. Entropies of adsorption in heterogeneous catalytic reactions. J. Catal. 56, 358–362 (1979).

    Article  CAS  Google Scholar 

  45. Spreafico, C., Karim, W., Ekinci, Y., van Bokhoven, J. A. & VandeVondele, J. Hydrogen adsorption on nanosized platinum and dynamics of spillover onto alumina and titania. J. Phys. Chem. C 121, 17862–17872 (2017).

    Article  CAS  Google Scholar 

  46. Yun, T. Y. & Chandler, B. D. Surface hydroxyl chemistry of titania- and alumina-based supports: quantitative titration and temperature dependence of surface Brønsted acid–base parameters. ACS Appl. Mater. Interfaces 15, 6868–6876 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Luetzenkirchen, J. & Finck, N. Treatment of temperature dependence of interfacial speciation by speciation codes and temperature congruence of oxide surface charge. Appl. Geochem. 102, 26–33 (2019).

    Article  CAS  Google Scholar 

  48. Beaumont, S. K., Alayoglu, S., Specht, C., Kruse, N. & Somorjai, G. A. A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles. Nano Lett. 14, 4792–4796 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Setvin, M. et al. Methanol on anatase TiO2 (101): mechanistic insights into photocatalysis. ACS Catal. 7, 7081–7091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Energy Basic Energy Sciences Program (DE-SC0022053 and DE-SC0016192) for primary support of this work. Preliminary experiments were supported by the National Science Foundation (CBET-1803769, 1803808 and 2102430) and the Research Corporation for Science Advancement. The computational work was completed with resources provided by the Research Computing Data Core at the University of Houston. We thank M. Janik at Penn State for invaluable discussions and T. Xie for his assistance in collecting TEM data.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.D.C., T.N.W. and A.M.-S. Formal analysis: A.M.-S., T.N.W., T.Y.Y., S.W., K.B.S.K. and L.C.R. Funding acquisition: B.D.C., L.C.G. and R.M.R. Investigation: A.M.-S., T.N.W., T.Y.Y., L.C.R., S.W. and K.B.S.K. Methodology: A.M.-S., T.N.W., T.Y.Y. and S.G. Project administration: B.D.C. Supervision: B.D.C., A.M.-S. and L.C.G. Visualization: A.M.-S., T.N.W., T.Y.Y. and S.W. Writing—original draft: B.D.C. and A.M.-S. Writing—review and editing: T.N.W., R.M.R., L.C.G., S.W. and K.B.S.K.

Corresponding author

Correspondence to Bert D. Chandler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Charles Campbell, Shuai Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–19, Tables 1–7 and References.

Supplementary Data 1

This document contains the atomic coordinates of the models in DFT calculations of charge density difference and spin density.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi-Shakib, A., Whittaker, T.N., Yun, T.Y. et al. The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat Catal 6, 710–719 (2023). https://doi.org/10.1038/s41929-023-00996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00996-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing