Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autonomous movement of platinum-loaded stomatocytes

Abstract

Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the supramolecular nanomotor.
Figure 2: Shape transformations of polymersomes assembled from PEG–PS into stomatocytes with controlled opening.
Figure 3: Controlled platinum catalyst entrapment.
Figure 4: Directional movements of the PtNP-containing stomatocytes.

Similar content being viewed by others

References

  1. Spudich, J. A. Molecular motors, beauty in complexity. Science 331, 1143–1144 (2011).

    Article  CAS  Google Scholar 

  2. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  3. van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  CAS  Google Scholar 

  4. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  5. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular motor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  6. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  Google Scholar 

  7. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  8. Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    Article  CAS  Google Scholar 

  9. Hawthorne, M. F. et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

    Article  CAS  Google Scholar 

  10. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  11. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. Construction of a DNA nanomechanical device. Nature 397, 144–146 (1999).

    Article  CAS  Google Scholar 

  12. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  13. Ismagilov, R., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 41, 652–654 (2002).

    Article  CAS  Google Scholar 

  14. Paxton, W. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  15. Kline, T., Paxton, W. & Mallouk, T. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).

    Article  Google Scholar 

  16. Demirok, U., Laocharoensuk, R., Manesh, K. M. & Wang, J. Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 120, 9489–9491 (2008).

    Article  Google Scholar 

  17. Gao, W., Sattayasamitsahit, S., Orozco, J. & Wang, J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133, 11862–11864 (2011).

    Article  CAS  Google Scholar 

  18. Solovev, A., Mei, Y., Urena, E. B., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 14, 1688–1692 (2009).

    Article  Google Scholar 

  19. Sanchez, S., Solovev, A., Harazim, S. M. & Schmidt, O. G. Microbots swimming in the flowing streams of microfluidic channels. J. Am. Chem. Soc. 133, 701–703 (2011).

    Article  CAS  Google Scholar 

  20. van Delden, J. R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  21. Wu, J. et al. Motion-based DNA detection using catalytic nanomotors. Nature Commun. 1, 1–6 (2010).

    Article  Google Scholar 

  22. Manesh, K. M. et al. Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4, 1799–1804 (2010).

    Article  CAS  Google Scholar 

  23. Balasubramanian, S. et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 123, 4247–4250 (2011).

    Article  Google Scholar 

  24. Pumera, M. Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2, 1643–1649 (2010).

    Article  CAS  Google Scholar 

  25. Mei, Y., Solovev, A. A., Sanchez, S. & Schmidt, O. G. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40, 2109–2119 (2011).

    Article  CAS  Google Scholar 

  26. Gibbs, J. G. & Zhao, Y. P. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94, 163104–163104 (2009).

    Article  Google Scholar 

  27. Valadares, L. F. et al. Catalytic nanomotors: self-propelled sphere dimers. Small 6, 565–572 (2010).

    Article  CAS  Google Scholar 

  28. Gibbs, J. G., Kothari, S., Saintillan, D. & Zhao, Y-P. Geometrically designing the kinematic behavior of catalytic nanomotors. Nano Lett. 11, 2543–2550 (2011).

    Article  CAS  Google Scholar 

  29. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  Google Scholar 

  30. Discher, B. M. et al. Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999).

    Article  CAS  Google Scholar 

  31. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  32. Percec, V. et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328, 1009–1014 (2010).

    Article  CAS  Google Scholar 

  33. Kim, K. T. et al. Polymersome stomatocytes: controlled shape transformation in polymer vesicles. J. Am. Chem. Soc. 132, 12522–12524 (2010).

    Article  CAS  Google Scholar 

  34. Yu, Y. & Eisenberg, A. Control of morphology through polymer–solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J. Am. Chem. Soc. 119, 8383–8384 (1997).

    Article  CAS  Google Scholar 

  35. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  36. Kotov, N. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  CAS  Google Scholar 

  37. Wang, L. & Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 131, 9152–9153 (2009).

    Article  CAS  Google Scholar 

  38. Filipe, V., Hawe, A. & Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27, 796–810 (2010).

    Article  CAS  Google Scholar 

  39. Ebbens, S. J. & Howse, J. R. Direct observation of the direction of motion for spherical catalytic swimmers. Langmuir 27, 12293–12296 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Science Foundation (NWO/CW) under the VICI-project ‘Kinetically controlled peptide–polymer artificial organelles’. D.A.W. and R.J.M.N. acknowledge financial support from the Royal Netherlands Academy of Science. The authors thank M. Ware, A. Siupa and J. Sullivan from the Nanosight Company for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

D.A.W., J.C.M.v.H. and R.J.M.N. conceived and designed the experiments. D.A.W. performed the experiments.

Corresponding authors

Correspondence to Daniela A. Wilson or Jan C. M. van Hest.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, D., Nolte, R. & van Hest, J. Autonomous movement of platinum-loaded stomatocytes. Nature Chem 4, 268–274 (2012). https://doi.org/10.1038/nchem.1281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing