Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shape-selective sieving layers on an oxide catalyst surface

This article has been updated

Abstract

New porous materials such as zeolites, metal–organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4–0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanocavity oxides selectively allow access only to molecules able to penetrate the <2-nm-diameter supermicroporous cavities.
Figure 2: Nanocavity dimensions determined by QCM and SAXS.
Figure 3: TEM images show ALD-coated SrTiO3 nanocuboids.
Figure 4: Adding nanocavity-containing films adds reactant selectivity to intrinsically unselective TiO2 photocatalysts.

Similar content being viewed by others

Change history

  • 09 November 2012

    In the version of this Article originally published online, the affiliation for Sungsik Lee and Randall E. Winans was incorrect, it should have read 'X-ray Science Division, Argonne National Laboratory'. This has now been corrected in all versions of the Article.

References

  1. Thomas, J. M. & Thomas, W. J. Principle and Practice of Heterogeneous Catalysis (VCH, 2005).

    Google Scholar 

  2. Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice 2nd edn (Krieger, 1991).

    Google Scholar 

  3. Bartholomew, C. H. & Farrauto, R. J. Fundamentals of Industrial Catalytic Processes 2nd edn (Wiley, 2006).

    Google Scholar 

  4. Centi, G., Cavani, F. & Trifiro, F. (eds) Selective Oxidation by Heterogeneous Catalysis (Kluwer Academic, 2001).

    Book  Google Scholar 

  5. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  6. Csicsery, S. M. Shape-selective catalysis in zeolites. Zeolites 4, 202–213 (1984).

    Article  CAS  Google Scholar 

  7. Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).

    Article  CAS  Google Scholar 

  8. Ogino, I. et al. Delamination of layered zeolite precursors under mild conditions: synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation. J. Am. Chem. Soc. 133, 3288–3291 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Diddams, P. A., Thomas, J. M., Jones, W., Ballantine, J. A. & Purnell, J. H. Synthesis, characterization, and catalytic activity of beidellite-montmorillonite layered silicates and their pillared analogs. J. Chem. Soc. Chem. Commun. 1340–1342 (1984).

  10. Chal, R., Gerardin, C., Bulut, M. & van Donk, S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3, 67–81 (2011).

    Article  CAS  Google Scholar 

  11. Valiullin, R., Kärger, J., Cho, K., Choi, M. & Ryoo, R. Dynamics of water diffusion in mesoporous zeolites. Micropor. Mesopor. Mater. 142, 236–244 (2011).

    Article  CAS  Google Scholar 

  12. Thomas, J. M., Hernandez-Garrido, J. C., Raja, R. & Bell, R. G. Nanoporous oxidic solids: the confluence of heterogeneous and homogeneous catalysis. Phys. Chem. Chem. Phys. 11, 2799–2825 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  14. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  15. Tanev, P. T. & Pinnavaia, T. J. A neutral templating route to mesoporous molecular sieves. Science 267, 865–867 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Katz, A. & Davis, M. E. Molecular imprinting of bulk, microporous silica. Nature 403, 286–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Tada, M. & Iwasawa, Y. Design of molecular-imprinting metal-complex catalysts. J. Mol. Catal. A 199, 115–137 (2003).

    Article  CAS  Google Scholar 

  20. Shultz, A. M. et al. Selective surface and near-surface modification of a noncatenated, catalytically active metal-organic framework material based on Mn(salen) struts. Inorg. Chem. 50, 3174–3176 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Galarneau, A., Barodawalla, A. & Pinnavala, T. J. Porous clay heterostructures formed by gallery-templated synthesis. Nature 374, 529–531 (1995).

    Article  CAS  Google Scholar 

  22. Cleveland, E. R., Banerjee, P., Perez, I., Lee, S. B. & Rubloff, G. W. Profile evolution for conformal atomic layer deposition over nanotopography. ACS Nano 4, 4637–4644 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Elam, J. W., Groner, M. D. & George, S. M. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev. Sci. Instrum. 73, 2981–2987 (2002).

    Article  CAS  Google Scholar 

  24. Libera, J. A., Elam, J. W. & Pellin, M. J. Conformal ZnO coatings on high surface area silica gel using atomic layer deposition. Thin Solid Films 516, 6158–6166 (2008).

    Article  CAS  Google Scholar 

  25. Groner, M. D., Fabreguette, F. H., Elam, J. W. & George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004).

    Article  CAS  Google Scholar 

  26. Leskela, M. & Ritala, M. Atomic layer deposition chemistry: recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548–5554 (2003).

    Article  CAS  Google Scholar 

  27. Jiang, X., Gur, T. M., Prinz, F. B. & Bent, S. F. Atomic layer deposition (ALD) co-deposited Pt-Ru binary and Pt skin catalysts for concentrated methanol oxidation. Chem. Mater. 22, 3024–3032 (2010).

    Article  CAS  Google Scholar 

  28. Backman, L. B., Rautiainen, A., Lindblad, M. & Krause, A. O. I. The interaction of cobalt species with alumina on Co/Al2O3 catalysts prepared by atomic layer deposition. Appl. Catal. A 360, 183–191 (2009).

    Article  CAS  Google Scholar 

  29. Christensen, S. T. et al. Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. Small 5, 750–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Lu, J. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Knez, M., Nielsch, K. & Niinistoe, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425–3438 (2007).

    Article  CAS  Google Scholar 

  32. Zhong, C. J. & Maye, M. M. Core–shell assembled nanoparticles as catalysts. Adv. Mater. 13, 1507–1511 (2001).

    Article  CAS  Google Scholar 

  33. Joo, S. H. et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Mater. 8, 126–131 (2009).

    Article  CAS  Google Scholar 

  34. Notestein, J. M., Iglesia, E. & Katz, A. Photoluminescence and charge-transfer complexes of calixarenes grafted on TiO2 nanoparticles. Chem. Mater. 19, 4998–5005 (2007).

    Article  CAS  Google Scholar 

  35. O'Regan, B. & Graetzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  36. De Silva, N. et al. A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chem. 2, 1062–1068 (2010).

    Article  CAS  Google Scholar 

  37. Lee, S. et al. Selective propene epoxidation on immobilized Au6-10 clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48, 1467–1471 (2009).

    Article  CAS  Google Scholar 

  38. Fox, M. A. & Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993).

    Article  CAS  Google Scholar 

  39. Zhang, M. et al. Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angew. Chem. Int. Ed. 48, 6081–6084 (2009).

    Article  CAS  Google Scholar 

  40. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Shen, X. et al. Inorganic molecular imprinted titanium dioxide photocatalyst: synthesis, characterization and its application for efficient and selective degradation of phthalate esters. J. Mater. Chem. 19, 4843–4851 (2009).

    Article  CAS  Google Scholar 

  42. Ghosh-Mukerji, S., Haick, H., Schvartzman, M. & Paz, Y. Selective photocatalysis by means of molecular recognition. J. Am. Chem. Soc. 123, 10776–10777 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Llabres i Xamena, F. X. et al. Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 125, 2264–2271 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Nishiyama, N., Miyamoto, M., Egashira, Y., & Ueyama, K. Zeolite membrane on catalyst particles for selective formation of p-xylene in the disproportionation of toluene. Chem. Commun. 1746–1747 (2001).

  45. Foley, H. C., Lafyatis, D. S., Mariwala, R. K., Sonnichsen, G. D. & Brake, L. D. Shape selective methylamines synthesis: reaction and diffusion in a CMS–SiO2–Al2O3 composite catalyst. Chem. Eng. Sci. 49, 4771–4786 (1994).

    Article  CAS  Google Scholar 

  46. Van der Puil, N. et al. Catalytic testing of TiO2/platinum/silicalite-1 composites. J. Chem. Soc. Faraday Trans. 92, 4609–4615 (1996).

    Article  CAS  Google Scholar 

  47. Jones, C. W., Tsuji, K. & Davis, M. E. Organic-functionalized molecular sieves as shape-selective catalysts. Nature 393, 52–54 (1998).

    Article  CAS  Google Scholar 

  48. Rabuffetti, F. A. et al. Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 20, 5628–5635 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Science. The authors thank K. Poeppelmeier for the gift of SrTiO3 nanocuboids. J.M.N. acknowledges a 3M Non-Tenured Faculty Grant, a DuPont Young Professor Grant, a Camille and Henry Dreyfus New Faculty Award and a US Department of Energy award (DE-SC0006718). S. Seifert and B. Lee are thanked for assistance with acquiring and analysing SAXS data. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported under contract no. DE-AC02-06CH11357. TEM was performed in the Electron Probe Instrumentation Center of NUANCE (supported by NSF-NSEC, NSF-MRSEC, Keck Foundation and the State of Illinois) at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

C.P.C. grafted templates, performed TGA, UV-vis, N2 physisorption, TEM and catalysis experiments, and wrote the paper. N.A.G.G. performed catalysis experiments. J.L. and J.W.E. performed ALD with in situ QCM. S.L. and R.E.W. performed SAXS. N.A.R. performed ALD with supervision by P.C.S. and R.P.v.D. J.M.N. wrote the paper, managed the collaboration and developed the initial concept.

Corresponding author

Correspondence to Justin M. Notestein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canlas, C., Lu, J., Ray, N. et al. Shape-selective sieving layers on an oxide catalyst surface. Nature Chem 4, 1030–1036 (2012). https://doi.org/10.1038/nchem.1477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing