Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anion order in perovskite oxynitrides

Abstract

Transition-metal oxynitrides with perovskite-type structures are an emerging class of materials with optical, photocatalytic, dielectric and magnetoresistive properties that may be sensitive to oxide–nitride order, but the anion-ordering principles were unclear. Here we report an investigation of the representative compounds SrMO2N (M = Nb, Ta) using neutron and electron diffraction. This revealed a robust 1O/2(O0.5N0.5) partial anion order (up to at least 750 °C in the apparently cubic high-temperature phases) that directs the rotations of MO4N2 octahedra in the room-temperature superstructure. The anion distribution is consistent with local cis-ordering of the two nitrides in each octahedron driven by covalency, which results in disordered zigzag M–N chains in planes within the perovskite lattice. Local structures for the full range of oxynitride perovskites are predicted and a future challenge is to tune properties by controlling the order and dimensionality of the anion chains and networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Powder neutron diffraction patterns for SrNbO2N.
Figure 2: Anion order in the SrMO2N perovskites.
Figure 3: Electron diffraction images of SrMO2N crystallites.
Figure 4: Illustrations of cis-(MX)n (X = N,O) chain formations that arise from anion order in oxynitride perovskites.

Similar content being viewed by others

References

  1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  Google Scholar 

  2. Ebbinghaus S. G. et al. Perovskite-related oxynitrides – recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173–205 (2009).

    Article  CAS  Google Scholar 

  3. Jansen, M. & Letschert, H. P. Inorganic yellow–red pigments without toxic metals. Nature 404, 980–982 (2000).

    Article  CAS  Google Scholar 

  4. Kim, Y., Woodward, P. M., Baba-Kishi, K. Z. & Tai, C. W. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb). Chem. Mater. 16, 1267–1276 (2004).

    Article  CAS  Google Scholar 

  5. Highashi, M., Abe, R., Takata, T. & Domen, K. Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3/I shuttle redox mediated system. Chem. Mater. 21, 1543–1549 (2009).

    Article  Google Scholar 

  6. Jorge, A. B. et al. Large coupled magnetoresponses in EuNbO2N. J. Am. Chem. Soc. 130, 12572–12573 (2008).

    Article  CAS  Google Scholar 

  7. Yang, M., Oró-Solé, J., Kusmartseva, A., Fuertes, A. & Attfield, J. P. Electronic tuning of two metals and colossal magnetoresistances in EuWO1+xN2–x perovskites. J. Am. Chem. Soc. 132, 4822–4829 (2010).

    Article  CAS  Google Scholar 

  8. Gunther, E., Hagenmayer, R. & Jansen, M. Strukturuntersuchungen an den oxidnitriden SrTaO2N, CaTaO2N und LaTaON2 mittels neutronen- und Röntgenbeugung. Z. Anorg. Allg. Chem. 626, 1519–1525 (2000).

    Article  CAS  Google Scholar 

  9. Clarke, S. J., Hardstone, K. A., Michie, C. W. & Rosseinsky, M. J. High-temperature synthesis and structures of perovskite and n = 1 Ruddlesden–Popper tantalum oxynitrides. Chem. Mater. 14, 2664–2669 (2002).

    Article  CAS  Google Scholar 

  10. Ebbinghaus, S. G., Weidenkaff, A., Rachel, A. & Reller, A. Powder neutron diffraction of SrNbO2N at room temperature and 1.5 K. Acta Cryst. C 60, i91–i93 (2004).

    Article  Google Scholar 

  11. Tatsumi, K. & Hoffmann, R. Bent cis d0 MO22+ vs. linear trans d0f0 UO22+: a significant role for nonvalence 6p orbitals in uranyl. Inorg. Chem. 19, 2656–2658 (1980).

    Article  CAS  Google Scholar 

  12. Barrie, P., Coffey, T. A., Forster, G. D. & Hogarth, G. Bent vs linear imido ligation at the octahedral molybdenum(VI) dithiocarbamate stabilised centre. J. Chem. Soc., Dalton Trans. 1999, 4519–4528.

  13. Fang, C. M. et al. Local structure and electronic properties of BaTaO2N with perovskite-type structure. J. Phys. Chem. Solids 64, 281–286 (2003).

    Article  CAS  Google Scholar 

  14. Wolff, H. & Dronskowski, R. First-principles and molecular-dynamics study of structure and bonding in perovskite-type oxynitrides ABO2N (A = Ca, Sr, Ba; B = Ta, Nb). J. Comput. Chem. 29, 2260–2267 (2008).

    Article  CAS  Google Scholar 

  15. Page, K. et al. Local atomic ordering in BaTaO2N studied by neutron pair distribution function analysis and density functional theory. Chem. Mater. 19, 4037–4042 (2007).

    Article  CAS  Google Scholar 

  16. Madras, N. & Slade, G. The Self-Avoiding Walk (Birkhäuser, 1996).

  17. Van Rensburg, E. J. Statistical mechanics of directed models of polymers in the square lattice. J. Phys. A 36, R11–R61 (2003).

    Article  Google Scholar 

  18. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  19. Rhiel, M., Wocadlo, S., Massa, W. & Dehnicke, K. Reaktionen von MoNCl, und WNCl, mit elementarem fluor. Kristallstrukturen von [MoO2F2(THF)2] und [WF4(NCl)(CH3CN)]. Z. Anorg. Allg. Chem. 622, 1195–1199 (1996).

    Article  CAS  Google Scholar 

  20. Chiu, H-T. et al. Syntheses and X-ray crystal-structures of dichlorobis(tert-butylimido) complexes of molybdenum(VI) – potential precursors to molybdenum nitride and molybdenum carbonitride. J. Chin. Chem. Soc. 41, 755–761 (1994).

    Article  CAS  Google Scholar 

  21. Logvinovich, D. et al. Synthesis, crystal structure and optical properties of LaNbON2 . Z. Anorg. Allg. Chem. 636, 905–912 (2010).

    Article  CAS  Google Scholar 

  22. Brink, F. J. et al. A combined diffraction (XRD, electron and neutron) and electrical study of Na3MoO3F3 . J. Solid State Chem. 174, 450–458 (2003).

    Article  CAS  Google Scholar 

  23. Tobías, G. et al. Anion ordering and defect structure in Ruddlesden–Popper strontium niobium oxynitrides. Inorg. Chem., 43, 8010–8017 (2004).

    Article  Google Scholar 

  24. Diot, N. et al. Crystal structure determination of the oxynitride Sr2TaO3N. J. Solid State Chem. 146, 390–393 (1999).

    Article  CAS  Google Scholar 

  25. Kusmartseva, A. et al. Large magnetoresistances and non-ohmic conductivity in EuWO1+xN2–x . Appl. Phys. Lett. 95, 022110 (2009).

    Article  Google Scholar 

  26. Fuertes, A . Synthesis and properties of functional oxynitrides – from photocatalysts to CMR materials. Dalton Trans. 39, 5942–5948 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Senn and C. Ritter for assistance with the neutron experiment at ILL. This work was supported by the Ministerio de Ciencia e Innovación (grants MAT2008-04587 and PR2008-0164), the Generalitat de Catalunya, the Engineering and Physical Science Research Council, the Science and Technology Facilities Council, the Royal Society, the Chemistry Research School of Edinburgh and St Andrews Universities and the Leverhulme Trust. We acknowledge the use of the Chemical Database Service at Daresbury.

Author information

Authors and Affiliations

Authors

Contributions

J.P.A. and A.F. conceived and designed the study. Samples were prepared by A.B.J., J.O. and M.Y. J.O. recorded the electron diffraction images and J.O. and M.Y. performed the neutron diffraction experiment. Neutron diffraction data were analysed by M.Y. with guidance from J.P.A. and J.A.R. J.P.A. and A.F. co-wrote the manuscript with comments and contributions from the other authors.

Corresponding authors

Correspondence to Amparo Fuertes or J. Paul Attfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Oró-Solé, J., Rodgers, J. et al. Anion order in perovskite oxynitrides. Nature Chem 3, 47–52 (2011). https://doi.org/10.1038/nchem.908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing