Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental probing of conical intersection dynamics in the photodissociation of thioanisole

Abstract

Chemical reactions that occur in the ground electronic state are described well by invoking the Born–Oppenheimer approximation, which allows their development to be rationalized by nuclear rearrangements that smoothly traverse an adiabatic potential energy surface. The situation is different, however, for reactions in electronically excited states, where non-adiabatic transitions occur between adiabatic surfaces. The conical intersection, in which two adiabatic surfaces touch, is accepted widely as the dynamic funnel for efficient non-adiabatic transitions, but its direct experimental probing is rare. Here, we investigate the photodissociation of thioanisole and observe a striking dependence of the relative yields of two reaction channels on the photoexcitation energy as indicated by a dynamic resonance in the product branching ratio. This results from the interference of two different adiabatic states that are in close proximity in the region of a conical intersection. The location of the observed resonance on the multidimensional potential energy surface thus reveals the nuclear configuration of the conical intersection and its dynamic role in the non-adiabatic transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three lowest diabatic potential energy curves of thioanisole along the S–CH3 bond elongation coordinate.
Figure 2: The S1 vibronic levels, the total •CH3 (v = 0) fragment yield and the / branching ratio plotted as a function of the photoexcitation energy.
Figure 3: Dynamic observables of products from the excited thioanisole near the conical intersection region.

Similar content being viewed by others

References

  1. Born, M. & Oppenheimer, R. On the quantum theory of molecules. Ann. Phys. 84, 457–484 (1927).

    Article  CAS  Google Scholar 

  2. Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).

    Article  CAS  Google Scholar 

  3. Domcke, W., Yarkony, D. R. & Köppel, H. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (World Scientific, 2004).

    Book  Google Scholar 

  4. Worth, G. A. & Cederbaum, L. S. Beyond Born–Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).

    Article  CAS  Google Scholar 

  5. Köppel, H., Domcke, W. & Cederbaum, L. S. Multimode molecular dynamics beyond the Born–Oppenheimer approximation. Adv. Chem. Phys. 57, 59–246 (1984).

    Google Scholar 

  6. Kohler, B. E. Octatetraene photoisomerization. Chem. Rev. 93, 41–54 (1993).

    Article  CAS  Google Scholar 

  7. Garavelli, M. et al. The C5H6NH2+ protonated Shiff base: an ab initio minimal model for retinal photoisomerization. J. Am. Chem. Soc. 119, 6891–6901 (1997).

    Article  CAS  Google Scholar 

  8. Kang, H. et al. Intrinsic lifetime of the excited state of DNA and RNA bases. J. Am. Chem. Soc. 124, 12958–12959 (2002).

    Article  CAS  Google Scholar 

  9. Soboleski, A. L., Domcke, W., Dedonder-Lardeux, C. & Jouvet, C. Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 4, 1093–1100 (2002).

    Article  Google Scholar 

  10. Perun, S., Sobolewski, A. L. & Domcke, W. Conical intersections in thymine. J. Phys. Chem. A 110, 13238–13244 (2006).

    Article  CAS  Google Scholar 

  11. Trushin, S. A., Fuß, W. & Schmid, W. E. Conical intersections, pseudorotation and coherent oscillations in ultrafast photodissociation of group-6 metal hexacarbonyls. Chem. Phys. 259, 313–330 (2000).

    Article  CAS  Google Scholar 

  12. Schnieder, L. et al. Experimental studies and theoretical predictions for the H+D2→HD+D reaction. Science 269, 207–210 (1995).

    Article  CAS  Google Scholar 

  13. Raab, A., Worth, G. A., Meyer, H.-D. & Cederbaum, L. S. Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 110, 936–946 (1999).

    Article  CAS  Google Scholar 

  14. Bersuker, I. B. The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry (Springer, 1984).

    Book  Google Scholar 

  15. Lim, J. S., et al. Intramolecular orbital alignment observed in the photodissociation of [D1]thiophenol. Angew. Chem. Int. Ed. 45, 6290–6293 (2006).

    Article  CAS  Google Scholar 

  16. Lim, I. S., Lim, J. S., Lee, Y. S. & Kim, S. K. Experimental and theoretical study of the photodissociation reaction of thiophenol at 243 nm: intramolecular orbital alignment of the phenylthiyl radical. J. Chem. Phys. 126, 034306 (2007).

    Article  Google Scholar 

  17. Lim, J. S., Lee, Y. S. & Kim, S. K. Control of intramolecular orbital alignment in the photodissociation of thiophenol: conformational manipulation by chemical substitution. Angew. Chem. Int. Ed. 47, 1853–1856 (2008).

    Article  CAS  Google Scholar 

  18. Devine, A. L., Nix, M. G. D., Dixon, R. N. & Ashfold, M. N. R. Near-ultraviolet photodissociation of thiophenol. J. Phys. Chem. A 112, 9563–9574 (2008).

    Article  CAS  Google Scholar 

  19. Ashfold, M. N. R. et al. The role of πσ* excited state in the photodissociation of heteroaromatic molecules. Science 312, 1637–1640 (2006).

    Article  CAS  Google Scholar 

  20. Crim, F. F. Vibrationally mediated photodissociation: exploring excited-state surfaces and controlling decomposition pathways. Annu. Rev. Phys. Chem. 44, 397–428 (1993).

    Article  CAS  Google Scholar 

  21. Hause, M. L., Yoon, Y. H., Case, A. S. & Crim, F. F. Dynamics at conical intersections: the influence of O–H stretching vibrations on the photodissociation of phenol. J. Chem. Phys. 128, 104307 (2008).

    Article  Google Scholar 

  22. Butler, L. J. Chemical reaction dynamics beyond the Born–Oppenheimer approximation. Annu. Rev. Phys. Chem. 49, 125–171 (1998).

    Article  CAS  Google Scholar 

  23. Keller, J. S., Kash, P. W., Jensen, E. & Butler, L. J. Selective bond fission in methyl mercaptan at 193 nm via radial derivative coupling between the 2 1A and 1 1A adiabatic electronic states. J. Chem. Phys. 96, 4324–4329 (1992).

    Article  CAS  Google Scholar 

  24. Abe, M. et al. Geometric phase effects in the coherent control of the branching ratio of photodissociation products of phenol. J. Chem. Phys. 124, 224316 (2006).

    Article  Google Scholar 

  25. Vieuxmaire, O. P. J., Lan, Z., Sobolewski, A. L. & Domcke, W. Ab initio characterization of the conical intersections involved in the photochemistry of phenol. J. Chem. Phys. 129, 224307 (2008).

    Article  Google Scholar 

  26. Lee, A. M. D. et al. Substitution effects on dynamics at conical intersections: α,β-enones. J. Phys. Chem. A 111, 11948–11960 (2007).

    Article  CAS  Google Scholar 

  27. Vondrak, T., Sato, S., Spirko, V. & Kimura, K. Zero kinetic energy (ZEKE) photoelectron spectroscopic study of thioanisole and its van der Waals complexes with argon. J. Phys. Chem. A 101, 8631–8638 (1997).

    Article  CAS  Google Scholar 

  28. Eppink, A. T. J. B. & Parker, D. H. Energy partitioning following photodissociation of methyl iodide in the A band: a velocity mapping study. J. Chem. Phys. 110, 832–844 (1999).

    Article  CAS  Google Scholar 

  29. McMillen, D. F. & Golden, D. M. Hydrocarbon bond dissociation energies. Ann. Rev. Phys. Chem. 33, 493–532 (1982).

    Article  CAS  Google Scholar 

  30. Zener, C. Non-adiabatic crossing of energy level. Proc. R. Soc. Lond. A 137, 696–702 (1932).

    Article  Google Scholar 

  31. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1960).

    Article  Google Scholar 

  32. Beak, S. J., Choi, K.-W., Choi, Y. S. & Kim, S. K. Resonant-enhanced two photon ionization and mass-analyzed threshold ionization spectroscopy of jet-cooled 2-aminopyridines (2AP–NH2, –NHD, –NDH, –ND2). J. Chem. Phys. 117, 2131–2140 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y.S. Lee and H. Choi for discussions, and assistance from J. Yoon and S. Han is appreciated. This work was supported by the National Research Foundation of Korea (2010-0001635, –0000068, –0015031; 313-2008-2-C00401) and KAIST (high-risk high-return).

Author information

Authors and Affiliations

Authors

Contributions

J.S.L. and S.K.K. conceived and designed the experiments, J.S. Lim performed the experiments, J.S. Lim and S.K. Kim analysed and interpreted data, and J.S. Lim and S.K. Kim co-wrote the paper.

Corresponding author

Correspondence to Sang Kyu Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Kim, S. Experimental probing of conical intersection dynamics in the photodissociation of thioanisole. Nature Chem 2, 627–632 (2010). https://doi.org/10.1038/nchem.702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing