Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction

Abstract

Ruthenium-catalysed ring-closing metathesis (RCM) is a powerful technique for the preparation of medium-to-large rings in organic synthesis, but the details of the intimate mechanism are obscure. The dynamic behaviour of an RCM-relevant ruthenacyclobutane complex and its reactivity with ethene were studied using low-temperature NMR spectroscopy to illuminate the mechanism of this widely used reaction. These kinetic and thermodynamic experiments allowed for mapping the energy surface of the key steps in the RCM reaction as mediated by Grubbs-type catalysts for alkene metathesis. The highest barrier along the RCM path is only 65 kJ mol−1, which shows that this catalyst has extremely high inherent activity. Furthermore, this transition state corresponds to that connecting the intermediates in this reaction leading to ring opening of the cyclopentene product. This shows that ring closing is kinetically slightly favoured over ring opening, in addition to being driven by the loss of ethene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ring-closing metathesis catalysis.
Figure 2: Degenerate intramolecular exchange processes.
Figure 3: Intermolecular exchange processes.
Figure 4: Reaction of 2 with ethene.
Figure 5: Competitive trapping of a ruthenium methylidene intermediate.
Figure 6: Energetic landscape of diene ring-closing metathesis at 220 K.

Similar content being viewed by others

References

  1. Conrad, J. C. & Fogg, D. E. Ruthenium-catalyzed ring-closing metathesis: recent advances, limitations and opportunities. Curr. Org. Chem. 10, 185–202 (2006).

    CAS  Google Scholar 

  2. Yee, N. K. et al. Efficient large-scale synthesis of BILN 2061,a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. J. Org. Chem. 71, 7133–7145 (2006).

    Article  CAS  Google Scholar 

  3. Badjic, J. D. et al. The exclusivity of multivalency in dynamic covalent processes. Angew. Chem. Int. Ed. 43, 3273–3278 (2004).

    Article  CAS  Google Scholar 

  4. Nielsen, T. E. & Schreiber, S. L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. 47, 48–56 (2008).

    Article  CAS  Google Scholar 

  5. Waldmann, H. Killing 84 birds with one stone. Nature Chem. Biol. 5, 76–77 (2009).

    Article  CAS  Google Scholar 

  6. Schrock, R. R. Olefin metathesis by molybdenum imido alkylidene catalysts. Tetrahedron 55, 8141–8153 (1999).

    Article  CAS  Google Scholar 

  7. Malcolmson, S. J., Meek, S. J., Sattely, E. S., Schrock, R. R. & Hoveyda, A. H. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis. Nature 456, 933–937 (2008).

    Article  CAS  Google Scholar 

  8. Grubbs, R. H., Miller, S. J. & Fu, G. C. Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res. 28, 446–452 (1995).

    Article  CAS  Google Scholar 

  9. Sanford, M. S., Ulman, M. & Grubbs, R. H. New insights into the mechanism of ruthenium-catalyzed olefin metathesis reactions. J. Am. Chem. Soc. 123, 749–750 (2001).

    Article  CAS  Google Scholar 

  10. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001).

    Article  CAS  Google Scholar 

  11. Trnka, T. M. & Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    Article  CAS  Google Scholar 

  12. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  Google Scholar 

  13. Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

    Article  CAS  Google Scholar 

  14. Correa, A. & Cavallo, L. The elusive mechanism of olefin metathesis promoted by (NHC)Ru-based catalysts: a trade between steric, electronic, and solvent effects. J. Am. Chem. Soc. 128, 13352–13353 (2006).

    Article  CAS  Google Scholar 

  15. Adlhart, C. & Chen, P. Mechanism and activity of ruthenium olefin metathesis catalysts: the role of ligands and substrates from a theoretical perspective. J. Am. Chem. Soc. 126, 3496–3510 (2004).

    Article  CAS  Google Scholar 

  16. Benitez, D. & Goddard, W. A. The isomerization equilibrium between cis and trans chloride ruthenium olefin metathesis catalysts from quantum mechanics calculations. J. Am. Chem. Soc. 127, 12218–12219 (2005).

    Article  CAS  Google Scholar 

  17. Straub, B. F. Origin of the high activity of second-generation Grubbs catalysts. Angew. Chem. Int. Ed. 44, 5974–5978 (2005).

    Article  CAS  Google Scholar 

  18. Romero, P. E., Piers, W. E. & McDonald, R. Rapidly initiating ruthenium olefin-metathesis catalysts. Angew. Chem. Int. Ed. 43, 6161–6165 (2004).

    Article  CAS  Google Scholar 

  19. Romero, P. E. & Piers, W. E. Direct observation of a 14-electron ruthenacyclobutane relevant to olefin metathesis. J. Am. Chem. Soc. 127, 5032–5033 (2005).

    Article  CAS  Google Scholar 

  20. Wenzel, A. G. & Grubbs, R. H. Ruthenium metallacycles derived from 14-electron complexes. New insights into olefin metathesis intermediates. J. Am. Chem. Soc. 128, 16048–16049 (2006).

    Article  CAS  Google Scholar 

  21. Romero, P. E. & Piers, W. E. Mechanistic studies on 14-electron ruthenacyclobutanes: degenerate exchange with free ethylene. J. Am. Chem. Soc. 129, 1698–1704 (2007).

    Article  CAS  Google Scholar 

  22. Webster, C. E. Computational insights into degenerate ethylene exchange with a Grubbs-type catalyst. J. Am. Chem. Soc. 129, 7490–7491 (2007).

    Article  CAS  Google Scholar 

  23. Dias, E. L., Nguyen, S. T. & Grubbs, R. H. Well-defined ruthenium olefin metathesis catalysts: mechanism and activity. J. Am. Chem. Soc. 119, 3887–3897 (1997).

    Article  CAS  Google Scholar 

  24. van der Eide, E. F., Romero, P. E. & Piers, W. E. Generation and spectroscopic characterization of ruthenacyclobutane and ruthenium olefin carbene intermediates relevant to ring closing metathesis catalysis. J. Am. Chem. Soc. 130, 4485–4491 (2008).

    Article  CAS  Google Scholar 

  25. Anderson, D. R., Hickstein, D. D., O'Leary, D. J. & Grubbs, R. H. Model compounds of ruthenium–alkene intermediates in olefin metathesis reactions. J. Am. Chem. Soc. 128, 8386–8387 (2006).

    Article  CAS  Google Scholar 

  26. Anderson, D. R., O'Leary, D. J. & Grubbs, R. H. Ruthenium–olefin complexes: effect of ligand variation upon geometry. Chem. Eur. J. 14, 7536–7544 (2008).

    Article  CAS  Google Scholar 

  27. Stewart, I. C. et al. Conformations of N-heterocyclic carbene ligands in ruthenium complexes relevant to olefin metathesis. J. Am. Chem. Soc. 131, 1931–1938 (2009).

    Article  CAS  Google Scholar 

  28. Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A standard system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).

    Article  CAS  Google Scholar 

  29. Kumar, P. S., Wurst, K. & Buchmeiser, M. R. Ru-alkylidene metathesis catalysts based on 1,3-dimesityl-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidenes: synthesis, structure, and activity. Organometallics 28, 1785–1790 (2009).

    Article  CAS  Google Scholar 

  30. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nature Chem. 1, 133–137 (2009).

    Article  CAS  Google Scholar 

  31. Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 90, 935–967 (1990).

    Article  CAS  Google Scholar 

  32. Naumov, S. & Buchmeiser, M. R. Comparative DFT study on the role of conformers in the ruthenium alkylidene-catalyzed ROMP of norborn-2-ene. J. Phys. Org. Chem. 21, 963–970 (2008).

    Article  CAS  Google Scholar 

  33. Wiberg, K. B. The concept of strain in organic chemistry. Angew. Chem. Int. Ed. Engl. 25, 312–322 (1986).

    Article  Google Scholar 

  34. Rowley, C. N., van der Eide, E. F., Piers, W. E. & Woo, T. K. DFT study of the isomerization and spectroscopic/structural properties of ruthenacyclobutane intermediates relevant to olefin metathesis. Organometallics 27, 6043–6045 (2008).

    Article  CAS  Google Scholar 

  35. Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems 3rd edn (Oxford Univ. Press, 2007).

    Google Scholar 

  36. Chemical Kinetics Simulator v.1.01 (IBM Almaden Research Center, San Jose, California, 1996).

  37. Lee, J. B., Ott, K. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanamethylene interconversion. Investigation of a degenerate olefin metathesis reaction. J. Am. Chem. Soc. 104, 7491–7496 (1982).

    Article  CAS  Google Scholar 

  38. Feldman, J., Davis, W. M., Thomas, J. K. & Schrock, R. R. Preparation and reactivity of tungsten(vi) metallacyclobutane complexes – square pyramids versus trigonal bipyramids. Organometallics 9, 2535–2548 (1990).

    Article  CAS  Google Scholar 

  39. Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    Article  CAS  Google Scholar 

  40. Wakamatsu, H. & Blechert, S. A new highly efficient ruthenium metathesis catalyst. Angew. Chem. Int. Ed. 41, 2403–2405 (2002).

    Article  CAS  Google Scholar 

  41. Bujok, R. et al. Ortho- and para-substituted Hoveyda–Grubbs carbenes. an improved synthesis of highly efficient metathesis initiators. J. Org. Chem. 69, 6894–6896 (2004).

    Article  CAS  Google Scholar 

  42. Leitao, E. M., Dubberley, S. R., Piers, W. E., Wu, Q. & McDonald, R. Thermal decomposition modes for four-coordinate ruthenium phosphonium alkylidene olefin metathesis catalysts. Chem. Eur. J. 14, 11565–11572 (2008).

    Article  CAS  Google Scholar 

  43. Hong, S. H., Wenzel, A. G., Salguero, T. T., Day, M. W. & Grubbs, R. H. Decomposition of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 129, 7961–7968 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant to W.E.P. E.F.v.d.E. thanks the Alberta Ingenuity Fund for financial support in the form of a Studentship. Materia Inc. (Pasadena) is acknowledged for donation of the Grubbs second-generation catalyst I. The authors thank M. Gagné for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.F.v.d.E. and W.E.P. conceived and designed the experiments, E.F.v.d.E. carried out the experiments and E.F.v.d.E. and W.E.P. co-wrote the paper.

Corresponding author

Correspondence to Warren E. Piers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Eide, E., Piers, W. Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction. Nature Chem 2, 571–576 (2010). https://doi.org/10.1038/nchem.653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing