Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition-mediated activation of therapeutic gold nanoparticles inside living cells

Abstract

Supramolecular chemistry provides a versatile tool for the organization of molecular systems into functional structures and the actuation of these assemblies for applications through the reversible association between complementary components. Use of this methodology in living systems, however, represents a significant challenge owing to the chemical complexity of cellular environments and lack of selectivity of conventional supramolecular interactions. Herein, we present a host–guest system featuring diaminohexane-terminated gold nanoparticles (AuNP–NH2) and complementary cucurbit[7]uril (CB[7]). In this system, threading of CB[7] on the particle surface reduces the cytotoxicity of AuNP–NH2 through sequestration of the particle in endosomes. Intracellular triggering of the therapeutic effect of AuNP–NH2 was then achieved through the administration of 1-adamantylamine (ADA), removing CB[7] from the nanoparticle surface, causing the endosomal release and concomitant in situ cytotoxicity of AuNP–NH2. This supramolecular strategy for intracellular activation provides a new tool for potential therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the gold nanoparticle and surface groups, and the use of intracellular host–guest complexation to trigger nanoparticle cytotoxicity.
Figure 2: NMR titration and TEM of AuNP–NH2–CB[7] complex.
Figure 3: Cellular uptake of gold nanoparticles.
Figure 4: Intracellular localization of gold nanoparticles.
Figure 5: Cytotoxicity of AuNP–NH2 and AuNP–NH2–CB[7] and modulating cytotoxicity of the gold nanoparticles.

Similar content being viewed by others

References

  1. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    Article  CAS  Google Scholar 

  2. Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  Google Scholar 

  3. Reinhoudt, D. N. & Crego-Calama, M. Synthesis beyond the molecule. Science 295, 2403–2407 (2002).

    Article  CAS  Google Scholar 

  4. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  5. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

    Book  Google Scholar 

  6. Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Mater. 4, 568–574 (2005).

    Article  CAS  Google Scholar 

  7. Hennig, A., Bakirci, H. & Nau, W. M. Label-free continuous enzyme assays with macrocycle fluorescent dye complexes. Nature Methods 4, 629–632 (2007).

    Article  CAS  Google Scholar 

  8. Klajn, R. et al. Dynamic hook-and-eye nanoparticle sponges. Nature Chem. 1, 733–738 (2009).

    Article  CAS  Google Scholar 

  9. Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J. F. & Zink, J. I. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. 47, 2222–2226 (2008).

    Article  CAS  Google Scholar 

  10. Angelos, S. et al. pH clock-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 12912–12914 (2009).

    Article  CAS  Google Scholar 

  11. Coti, K. K. et al. Mechanised nanoparticles for drug delivery. Nanoscale 1, 16–39 (2009).

    Article  CAS  Google Scholar 

  12. Lee, H. K. et al. Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface and multivalent binding of sugar-decorated vesicles to lectin. J. Am. Chem. Soc. 127, 5006–5007 (2005).

    Article  CAS  Google Scholar 

  13. Park, C., Oh, K., Lee, S. C. & Kim, C. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew. Chem. Int. Ed. 46, 1455–1457 (2007).

    Article  CAS  Google Scholar 

  14. Du, L., Liao, S., Khatib, H. A., Stoddart, J. F. & Zink, J. I. Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc. 131, 15136–15142 (2009).

    Article  CAS  Google Scholar 

  15. Hayashida, O. & Uchiyama, M. Multivalent macrocyclic hosts: histone surface recognition, guest binding and delivery by cyclophane-based resorcinarene oligomers. J. Org. Chem. 72, 610–616 (2007).

    Article  CAS  Google Scholar 

  16. Sansone, F. et al. DNA condensation and cell transfection properties of guanidinium calixarenes: dependence on macrocycle lipophilicity, size and conformation. J. Am. Chem. Soc. 128, 14528–14536 (2006).

    Article  CAS  Google Scholar 

  17. Weimann, D. P., Winkler, H. D. F., Falenski, J. A., Koksch, B. & Schalley, C. A. Highly dynamic motion of crown ethers along oligolysine peptide chains. Nature Chem. 1, 573–577 (2009).

    Article  CAS  Google Scholar 

  18. Darwish, I. A. & Uchegbu, I. F. The evaluation of crown ether based niosomes as cation containing and cation sensitive drug delivery systems. Int. J. Pharm. 159, 207–213 (1997).

    Article  CAS  Google Scholar 

  19. Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

    Article  CAS  Google Scholar 

  20. Kim, K. et al. Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007).

    Article  CAS  Google Scholar 

  21. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    Article  CAS  Google Scholar 

  22. Wheate, N. J. et al. Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. Chem. Commun. 1424–1425 (2004).

  23. Jeon, Y. J. et al. Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem. 3, 2122–2125 (2005).

    Article  CAS  Google Scholar 

  24. Wheate, N. J. Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. J. Inorg. Biochem. 102, 2060–2066 (2008).

    Article  CAS  Google Scholar 

  25. Wheate, N. J., Buck, D. P., Day, A. I. & Collins, J. G. Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans. 451–458 (2006).

  26. Lim, Y. B. et al. Self-assembled ternary complex of cationic dendrimer, cucurbituril and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem. 13, 1181–1185 (2002).

    Article  CAS  Google Scholar 

  27. Kim, S. K. et al. Galactosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery. Chem. Commun. 46, 692–694 (2010).

    Article  CAS  Google Scholar 

  28. Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanoparticles exhibiting AND logic. J. Am. Chem. Soc. 131, 11344–11346 (2009).

    Article  CAS  Google Scholar 

  29. Ghosh, S. & Isaacs, L. Biological catalysis regulated by cucurbit[7]uril molecular containers. J. Am. Chem. Soc. 132, 4445–4454 (2010).

    Article  CAS  Google Scholar 

  30. Templeton, A. C., Wuelfing, M. P. & Murray, R. W. Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  31. Liu, S. M. et al. The cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005).

    Article  CAS  Google Scholar 

  32. Lee, J. W., Ko, Y. H., Park, S. H., Yamaguchi, K. & Kim, K. Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew. Chem. Int. Ed. 40, 746–749 (2001).

    Article  CAS  Google Scholar 

  33. Davies, W. L. et al. Antiviral activity of 1-adamantanamine (amantadine). Science 144, 862–863 (1964).

    Article  CAS  Google Scholar 

  34. Maassab, H. F. & Cochran, K. W. Rubella virus—inhibition in vitro by amantadine hydrochloride. Science 145, 1443–1444 (1964).

    Article  CAS  Google Scholar 

  35. Hagan, J. J., Middlemiss, D. N., Sharpe, P. C. & Poste, G. H. Parkinson's disease: prospects for improved drug therapy. Trends Pharmacol. Sci. 18, 156–163 (1997).

    Article  CAS  Google Scholar 

  36. Zhu, Z. J., Ghosh, P. S., Miranda, O. R., Vachet, R. W. & Rotello, V. M. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 130, 14139–14143 (2008).

    Article  CAS  Google Scholar 

  37. Kim, C. K. et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360–1361 (2009).

    Article  CAS  Google Scholar 

  38. Godbey, W. T., Wu, K. K. & Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J. Controlled Release 60, 149–160 (1999).

    Article  CAS  Google Scholar 

  39. Leroueil, P. R. et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 8, 420–424 (2008).

    Article  CAS  Google Scholar 

  40. Fischer, D., Bieber, T., Li, Y. X., Elsasser, H. P. & Kissel, T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16, 1273–1279 (1999).

    Article  CAS  Google Scholar 

  41. Ghosh, P. S., Kim, C. K., Han, G., Forbes, N. S. & Rotello, V. M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2, 2213–2218 (2008).

    Article  CAS  Google Scholar 

  42. Lovric, J. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377–385 (2005).

    Article  Google Scholar 

  43. Goodman, C. M., McCusker, C. D., Yilmaz, T. & Rotello, V. M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 15, 897–900 (2004).

    Article  CAS  Google Scholar 

  44. Fuller, J. E. et al. Intracellular delivery of core–shell fluorescent silica nanoparticles. Biomaterials 29, 1526–1532 (2008).

    Article  CAS  Google Scholar 

  45. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    CAS  Google Scholar 

  46. Taylor, S. K. et al. Triggered release of an active peptide conjugate from a DNA device by an orally administrable small molecule. Angew. Chem. Int. Ed. 48, 4394–4397 (2009).

    Article  CAS  Google Scholar 

  47. Sarkar, D. et al. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc. Natl Acad. Sci. USA 102, 14034–14039 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Solfiell for his assistance in preparing this manuscript. S.S.A. acknowledges a graduate school fellowship. This work was supported by the National Institites of Health (GM077173, V.M.R.), and L.I. thanks the National Science Foundation (CHE-0615049 and CHE-0914745) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.K., S.S.A., L.I. and V.M.R. conceived and designed the experiments. C.K., S.S.A. and Z.Z. performed the experiments. C.K., S.S.A., Z.Z., L.I. and V.M.R. analysed the data and wrote the paper.

Corresponding author

Correspondence to Vincent M. Rotello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Agasti, S., Zhu, Z. et al. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nature Chem 2, 962–966 (2010). https://doi.org/10.1038/nchem.858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.858

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research