Articles in 2017

Filter By:

  • Intracellular protein delivery has been a major challenge in the field of cell biology for decades. Engineering such delivery is a key step in the development of protein- and antibody-based therapeutics. Now, two different approaches that enable the delivery of antibodies and antibody fragments into the cytosol have been developed.

    • Macarena Sánchez-Navarro
    • Meritxell Teixidó
    • Ernest Giralt
    News & Views
  • Bruce C. Gibb takes a look at the complex cocktail of chemical compounds that make up gin.

    • Bruce C. Gibb
    Thesis
  • The flow of energy in Earth's primary light harvesters — photosynthetic pigment–protein complexes — needs to be heavily regulated, as the sun's energy supply can vary over many orders of magnitude. Observing hundreds of individual light-harvesting complexes has now provided important insights into the machinery that regulates this process.

    • Peter J. Walla
    News & Views
  • Adrian Dingle tells the story of how the name of element 109 represents the lasting recognition that one of the greatest nuclear physicists was in danger of never receiving.

    • Adrian Dingle
    In Your Element
  • Recent years have witnessed a surge of interest in targeted covalent inhibition of disease-associated proteins. Among the electrophiles used to interact with nucleophilic residues in protein structures, boron is unique for its chameleonic ability to display a range of coordination modes upon interaction with protein targets.

    • Diego B. Diaz
    • Andrei K. Yudin
    Review Article
  • Supramolecular heterostructures have been formed by the sequential deposition of two molecular layers with different symmetries and lattice constants — one consisting of carboxylic acid, the other of cyanuric acid and melamine — on a hexagonal boron nitride substrate. Characterization by atomic force microscopy and molecular dynamics simulations shows epitaxial arrangements between the layers.

    • Vladimir V. Korolkov
    • Matteo Baldoni
    • Peter H. Beton
    Article
  • Woven topologies endow macroscopic objects with mechanical stability, but their molecular counterparts have remained difficult to prepare. Now, an extended triaxial supramolecular weave has been formed by the self-assembly of a judiciously shaped organic building block — a rigid oligoproline segment featuring two perylene-monoimide moieties — through ππ stacking and CH–π interactions.

    • Urszula Lewandowska
    • Wojciech Zajaczkowski
    • Helma Wennemers
    Article
  • Creating systems that merge some of the advantages of both heterogeneous and molecular catalysis is a useful approach to developing improved catalysts. Following this strategy, a liquid mixture of gallium and palladium supported on porous glass has now been shown to form an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable.

    • N. Taccardi
    • M. Grabau
    • P. Wasserscheid
    Article
  • The collective synthesis of several oligomeric polypyrroloindoline natural products, including hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridines B and C, is accomplished through the iterative action of an asymmetric small molecule copper catalyst. This strategy also enables the synthesis of putatively unnatural quadrigemine H-type isomers.

    • Christopher R. Jamison
    • Joseph J. Badillo
    • David W. C. MacMillan
    Article
  • Amines are commonly occurring units in many biologically active molecules. Now, a catalytic method has been developed that merges an unprotected/unactivated ketimine, a monosubstituted allene and a commercially available diboron reagent to afford versatile α-tertiary amines in up to 95% yield, >98% diastereomeric ratio and >99:1 enantiomeric ratio. The utility of this method was demonstrated through its application to the synthesis of the tricyclic core of a class of compounds with anti-Alzheimer activity.

    • Hwanjong Jang
    • Filippo Romiti
    • Amir H. Hoveyda
    Article
  • Modular hybridization probes (M-Probes) have been developed that enable sequence-selective binding of complex nucleic acid targets. The M-probes can target sequences that: are hypervariable at prescribed loci, are long continuous sequences of over 500 nucleotides, or contain repetitive sequences. A hybrid-capture assay using the M-probes was developed that was capable of determining the exact triplet repeat expansion number in the Huntington's gene from genomic DNA.

    • Juexiao Sherry Wang
    • Yan Helen Yan
    • David Yu Zhang
    Article
  • Photoprotection is crucial for the fitness of organisms that carry out oxygenic photosynthesis. LHCSR, a photosynthetic light-harvesting complex, has been implicated in photoprotection in green algae and moss. Now, single-molecule studies of LHCSR have revealed that multi-timescale protein dynamics underlie photoprotective dissipation of excess energy.

    • Toru Kondo
    • Alberta Pinnola
    • Gabriela S. Schlau-Cohen
    Article
  • Delivery of antibodies into living cells enables the labelling and manipulation of intracellular antigens; however, transporting antibodies into the cytosol in a functional state is difficult. Now, a modular strategy for creating cell-permeable nanobodies capable of targeting intracellular antigens has been developed. The cell-permeable nanobodies are formed by site-specific attachment of cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain antibody fragments.

    • Henry D. Herce
    • Dominik Schumacher
    • Christian P. R. Hackenberger
    Article
  • The transition state governs how bonds form and cleave during a reaction — its direct characterization is a long-standing challenge. Now, the F + CH3OH → HF + CH3O reactive surface has been studied using photoelectron velocity-map imaging spectroscopy of cryo-cooled anions, revealing vibrational Feshbach resonances and bound states supported by the post-transition-state potential well. The experiments agree well with quantum dynamical calculations.

    • Marissa L. Weichman
    • Jessalyn A. DeVine
    • Daniel M. Neumark
    Article
  • Current mineral-based theories do not fully address how enzymes emerged from prebiotic catalysts. Now, iron–sulfur clusters can be synthesized by UV-light-mediated photolysis of organic thiols and photooxidation of ferrous ions. Iron–sulfur peptides may have formed easily on early Earth, facilitating the emergence of iron–sulfur-cluster-dependent metabolism.

    • Claudia Bonfio
    • Luca Valer
    • Sheref S. Mansy
    Article
  • Octameric complexes of serine are long known for their special properties, such as their enhanced stability and preference for homochirality. Yet, there is no consensus on their structures. Now, experimental data on the serine octamer–dichloride complex is presented that supports a highly symmetrical, highly stable structure.

    • Jongcheol Seo
    • Stephan Warnke
    • Gert von Helden
    Article
  • A metallo–DNA hybrid nanowire composed only of silver-mediated base pairs has been prepared and its crystal structure resolved by X-ray diffraction. The nanowire, which is 2 nm wide and whose length reaches the μm to mm scale, holds silver ions into uninterrupted one-dimensional arrays along the DNA helical axis.

    • Jiro Kondo
    • Yoshinari Tada
    • Yoshiyuki Tanaka
    Article
  • Several natural and unnatural lissoclimide cytotoxins have been prepared via semi-synthesis and total synthesis. An X-ray co-crystal structure of chlorolissoclimide with the ribosome and evaluation of cytotoxicity and translation inhibition of new compounds in the series improves our understanding of the molecular basis for cytotoxicity.

    • Zef A. Könst
    • Anne R. Szklarski
    • Christopher D. Vanderwal
    Article