Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The versatility of boron in biological target engagement

Abstract

Boron-containing molecules have been extensively used for the purposes of chemical sensing, biological probe development and drug discovery. Due to boron's empty p orbital, it can coordinate to heteroatoms such as oxygen and nitrogen. This reversible covalent mode of interaction has led to the use of boron as bait for nucleophilic residues in disease-associated proteins, culminating in the approval of new therapeutics that work by covalent mechanisms. Our analysis of a wide range of covalent inhibitors with electrophilic groups suggests that boron is a unique electrophile in its chameleonic ability to engage protein targets. Here we review boron's interactions with a range of protein side-chain residues and reveal that boron's properties are nuanced and arise from its uncommon coordination preferences. These mechanistic and structural insights should serve as a guide for the development of selective boron-based bioactive molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Boron and its diversity of binding modes during biological target engagement.
Figure 2: Epitaxial selection of boronate esters by proteases.
Figure 3: Boron inhibitors that rely on boronic esters.
Figure 4: Boron inhibitors with endocyclic B–O and B–N bonds.
Figure 5: The pH-dependence of dipeptide boronic acid structure and inhibition activity.
Figure 6: Covalent engagement of catalytic and non-catalytic histidine and lysine residues.
Figure 7: Alternate binding modes for alkylboronic acid inhibitors.
Figure 8: 1,2-Azaborines as boron-containing arene mimetics bound to T4 lysozyme L99A (non-polar) and L99A/M102Q (polar) binding pockets.
Figure 9: Boron's trigonal non-covalent mode.

Similar content being viewed by others

References

  1. Protein Data Bank (Research Collaboratory for Structural Bioinformatics, 2017); http://go.nature.com/2tkYmNB

  2. Murphy, B. P. & Pratt, R. F. Evidence for an oxyanion hole in serine β-lactamases and DD-peptidases. Biochem. J. 256, 669–672 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Usher, K. C., Blaszczak, L. C., Weston, G. S., Shoichet, B. K. & Remington, S. J. Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry 37, 16082–16092 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Koehler, K. A. & Lienhard, G. E. 2-Phenylethaneboronic acid, a possible transition-state analog for chymotrypsin. Biochemistry 10, 2477–2483 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T. & Kraut, J. X-ray crystallographic study of boronic acid adducts with substilisin BPN′ (Novo). A model for the catalytic transition state. J. Biol. Chem. 250, 7120–7126 (1975).

    CAS  PubMed  Google Scholar 

  6. Kettner, C. A. & Shenvi, A. B. Inhibition of serine proteases leukocyte elastase, pancreatic elastase, cathespsin G, and chymotrypsin by peptide boronic acids. J. Biol. Chem. 259, 15106–15114 (1984).

    CAS  PubMed  Google Scholar 

  7. Farr-Jones, S., Smith, S. O., Kettner, C. A., Griffin, R. G. & Bachovchin, W. W. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in crystalline state. Proc. Natl Acad. Sci. USA 86, 6922–6924 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katz, B. A., Finer-Moore, J., Mortezaei, R., Rich, D. H. & Stroud, R. M. Episelection: novel Ki nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface. Biochemistry 34, 8264–8280 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Behnam, M. A. M., Sundermann, T. R. & Klein, C. D. Solid phase synthesis of C-terminal boronic acid peptides. Org. Lett. 18, 2016–2019 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Fuhrmann, C. N., Daugherty, M. D. & Agard, D. A. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis. J. Am. Chem. Soc. 128, 9086–9102 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Rosholm, T., Gois, P. M. P., Franzen, R. & Candeias, N. R. Glycerol as an efficient medium for the Petasis borono–Mannich Reaction. ChemistryOpen 4, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Nitsche, C. et al. Peptide-boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J. Med. Chem. 60, 511–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Lei, J. et al. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353, 503–505 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Shirley, M. Ixazomib: first global approval. Drugs 76, 405–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kupperman, E. et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research 70, 1970–1980 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Schrader, J. et al. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science 353, 595–598 (2016).

    Article  CAS  Google Scholar 

  17. Morandi, F. et al. Nanomolar inhibitors of AmpC β-lactamase. J. Am. Chem. Soc. 125, 685–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez, J. A. et al. MIDA boronates are hydrolysed fast and slow by two different mechanisms. Nat. Chemistry 8, 1067–1075 (2016).

    Article  CAS  Google Scholar 

  19. Diaz, D. B. et al. Synthesis of aminoboronic acid derivatives from amines and amphoteric boryl carbonyl compounds. Angew. Chem. Int. Ed. 55, 12659–12663 (2016).

    Article  CAS  Google Scholar 

  20. Adachi, S. et al. Facile synthesis of borofragments and their evaluation in activity-based protein profiling. Chem. Commun. 51, 3608–3611 (2015).

    Article  CAS  Google Scholar 

  21. Llona-Minguez, S. et al. Discovery of the first potent and selective inhibitors of human dCTP pyrophosphatase 1. J. Med. Chem. 59, 1140–1148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zajdlik, A. et al. α-Boryl isocyanides enable facile preparation of bioactive boropeptides. Angew. Chem. Int. Ed. 52, 8411–8415 (2013).

    Article  CAS  Google Scholar 

  23. Hecker, S. J. et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J. Med. Chem. 58, 3682–3692 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Tondi, D. et al. Targeting Class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. J. Med. Chem. 57, 5449–5458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. Novel macrocyclic HCV NS3 protease inhibitors derived from α-amino cyclic boronates. Bioorg. Med. Chem. Lett. 20, 5695–5700 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Lai, J. H. et al. Synthesis and characterization of constrained peptidomimetic dipeptidyl peptidase IV inhibitors: amino-lactam boroalanines. J. Med. Chem. 50, 2391–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Coutts, S. J. et al. Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptidase IV. 1. Variation of the P2 position of Xaa-boroPro dipeptides. J. Med. Chem. 39, 2087–2094 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Snow, R. J. et al. Studies on proline boronic acid dipeptide inhibitors of dipeptidyl peptidase IV: identification of a cyclic species containing a B–N bond. J. Am. Chem. Soc. 116, 10860–10869 (1994).

    Article  CAS  Google Scholar 

  29. Engel, M. et al. Rigidity and flexibility of dipeptidyl peptidase IV: crystal structures of and docking experiments with DPIV. J. Mol. Biol. 355, 768–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Martichonok, V. & Jones, J. B. Probing the specificity of the serine proteases subtilisin carlsberg and α-chymotrypsin with enantiomeric 1-acetamido boronic acids. An unexpected reversal of the normal “L”-stereoselectivity preference. J. Am. Chem. Soc. 118, 950–958 (1996).

    Article  CAS  Google Scholar 

  31. Stoll, V. S. et al. Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of γ-chymotrypsin and subtilisin Carlsberg complexes. Biochemistry 37, 451–462 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Z. J. et al. The N–B interaction through a water bridge: understanding the chemoselectivity of a fluorescent protein based probe for peroxynitrite. J. Am. Chem. Soc. 138, 4900–4907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zervosen, A. et al. Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin-binding protein. J. Am. Chem. Soc. 133, 10839–10848 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Adams, J. et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8, 333–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. LeBeau, A. M., Singh, P., Isaacs, J. T. & Denmeade, S. R. Potent and selective peptidyl boronic acid inhibitors of the serine protease prostate-specific antigen. Chemistry and Biology 15, 665–674 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Martinchonok, V. & Jones, B. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids. Bioorg. Med. Chem. Lett. 5, 679–684 (1997).

    Article  Google Scholar 

  37. Gutierrez-Moreno, N. J., Medrano, F. & Yatsimirsky, A. K. Schiff base formation and recognition of amino sugars, aminoglycosides and biological polyamines by 2-formyl phenylboronic acid in aqueous solution. Org. Biomol. Chem. 10, 6960–6972 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bandyopadhyay, A., McCarthy, K. A., Kelly, M. A. & Gao, J. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Nat. Commun. 6, 6561 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Cal, P. M. S. D. et al. Iminoboronates: a new strategy for reversible protein modification. J. Am. Chem. Soc. 134, 10299–10305 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Akçay, G. et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 12, 931–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Sgrignani, J., Beatrice, N., Colombo, G. & Grazioso, G. Covalent docking of selected boron-based serine beta-lactamase inhibitors. J. Comput. Aided Mol. Des. 29, 441–450 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. London, N. et al. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10, 1066–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Malhotra, S. & Karanicolas, J. When does chemical elaboration induce a ligand to change its binding mode? J. Med. Chem. 60, 128–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Bone, R., Frank, D., Kettner, C. A. & Agard, D. A. Structural analysis of specificity: α-lytic protease complexes with analogues of reaction intermediates. Biochemistry 28, 7600–7609 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Clevenger, K. D., Wu, R., Liu, D. & Fast, W. n-Alkylboronic acid inhibitors reveal determinants of ligand specificity in the quorum-quenching and siderophore biosynthetic enzyme PvdQ. Biochemistry 53, 6679–6686 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Clevenger, K. D., Wu, R., Er, J. A., Liu, D. & Fast, W. Rational design of a transition state analogue with picomolar affinity to Pseudomonas aeruginosa PvdQ, a siderophore biosynthetic enzyme. ACS Chem. Biol. 8, 2192–2200 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Amani, J. & Molander, G. A. Toward efficient nucleophilic azaborine building blocks for the synthesis of B–N naphthyl (hetero)arylmethane isosteres. Org. Lett. 17, 3624–3627 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Adachi, S. et al. Condensation-driven assembly of boron-containing bis(heteroaryl) motifs using a linchpin approach. Org. Lett. 17, 5594–5597 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, P., Nettletone, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. Medicinal chemistry profiling of monocyclic 1, 2-azaborines. Chem. Med. Chem. 12, 358–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, H.-B. et al. Elemental isomerism: a boron–nitrogen surrogate for a carbon–carbon double bond increases the chemical diversity of estrogen receptor ligands. Chemistry and Biology 14, 659–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Chrostowska, A. et al. UV-Photoelectron spectroscopy of 1,2- and 1,3-Azaborines: a combined experimental and computational electronic structure analysis. J. Am. Chem. Soc. 134, 10279–10285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S.-Y. Late-stage functionalization of 1,2-dihydro-1,2-azaborines via regioselective iridium-catalyzed C–H borylation: the development of a new N, N-bidentate ligand scaffold. J. Am. Chem. Soc. 137, 5536–5541 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, H., Fischer, M., Shoichet, B. K. & Liu, S.-Y. Hydrogen bonding of 1,2-azaborines in the binding cavity of T4 lysozyme mutants: structures and thermodynamics. J. Am. Chem. Soc. 138, 12021–12024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, L., Marwitz, A. J. V., Matthews, B. W. & Liu, S.-Y. Boron mimetics: 1,2-dihydro-1,2-azaborines bind inside a nonpolar cavity of T4 lysozyme. Angew. Chem. Int. Ed. 48, 6817–6819 (2009).

    Article  CAS  Google Scholar 

  55. Morton, A., Baase, W. A. & Matthews, B. W. Biochemistry 34, 8564–8575 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Tomsho, J. W., Pal, A., Hall, D. G. & Benkovic, S. J. Ring structure and aromatic substituent effects on the pKa of the benzoxaborole pharmacophore. ACS Med. Chem. Lett. 3, 48–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Dowlut, M. & Hall, D. G. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 128, 4226–4227 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Torssell, K. Zur kenntnis der arylborsauren 0.3. Bromierung der tolylborsauren nach wohl-ziegler [in German]. Ark. Kemi. 10, 507–511 (1957).

    CAS  Google Scholar 

  59. Rock, F. L. et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316 1759–1761 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hernandez, V. et al. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrobial Agents and Chemotherapy 57, 1394–1403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alterio, V. et al. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chem. Commun. 52, 11983–11986 (2016).

    Article  CAS  Google Scholar 

  62. Akama, T. et al. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors. J. Pharmacol. Exp. Ther. 347, 615–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. D'Antonio, E. L. & Christianson, D. W. Crystal structures of complexes with cobalt-reconstituted human arginase I. Biochemistry 50, 8018–8027 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cama, E. et al. Inhibitor coordination interactions in the binuclear manganese cluster of arginase. Biochemistry 43, 8987–8999 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Van Zandt, M. C. et al. Discovery of (R)-2-amino-6-boron-2-(2-(piperidin-1-yl)ethyl)hexanoic acid congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J. Med. Chem. 56, 2568–2580 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Golebiowski, A. et al. Synthesis of quaternary α-amino acid-based arginase inhibitors via the Ugi reaction. Bioorg. Med. Chem. Lett. 23, 4837–4841 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Fruend, Y. R. et al. Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center. FEBS Letters 586, 3410–3414 (2012).

    Article  CAS  Google Scholar 

  68. D'Antonio, E. L., Y., H. & Christianson, D. W. Structure and function of non-native metal clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Brem, J. et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nature Communications 7, 12406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Albers, H. M. H. G. et al. Structure-based design of novel boronic acid-base inhibitors of autotaxin. J. Med. Chem. 54, 4619–4626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hausmann, J. et al. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Bio. 18, 198–204 (2011).

    Article  CAS  Google Scholar 

  72. Martinez, S., Wu, R., Sanishvili, R., Liu D. & Holz, R. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. J. Am. Chem. Soc. 136, 1186–1189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Science and Engineering Research Council (NSERC) and the Canadian Institutes of Health Research (CIHR) for financial support. Helpful discussions with Harjeet Soor (UofT) and Frank Lee (UofT) are gratefully appreciated. D.B.D. also thanks NSERC for PGS-D funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei K. Yudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, D., Yudin, A. The versatility of boron in biological target engagement. Nature Chem 9, 731–742 (2017). https://doi.org/10.1038/nchem.2814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing