Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection

Abstract

In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time traces of fluorescence intensity and lifetime of LHCSR1 and LHCB1.
Figure 2: Fluorescence intensity–lifetime probability distributions of single LHCSR1 and LHCB1 reveal protein dynamics.
Figure 3: Cartoon illustration of the free-energy landscape of LHCSR1.
Figure 4: Potential scheme of light-harvesting activity regulated through LHCSR1.

Similar content being viewed by others

References

  1. Amerongen, H. & Croce, R. Light harvesting in photosystem II. Photosynth. Res. 116, 251–263 (2013).

    Article  Google Scholar 

  2. Ruban, A. V., Johnson, M. P. & Duffy, C. D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012).

    Article  CAS  Google Scholar 

  3. Rochaix, J.-D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287–309 (2014).

    Article  CAS  Google Scholar 

  4. Erickson, E., Wakao, S. & Niyogi, K. K. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 82, 449–465 (2015).

    Article  CAS  Google Scholar 

  5. Berteotti, S., Ballottari, M. & Bassi, R. Increased biomass productivity in green algae by tuning non-photochemical quenching. Sci. Rep. 6, 21339 (2016).

    Article  CAS  Google Scholar 

  6. Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    Article  CAS  Google Scholar 

  7. Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009).

    Article  CAS  Google Scholar 

  8. Bonente, G. et al. Analysis of lhcsr3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 9, e1000577 (2010).

    Article  Google Scholar 

  9. Alboresi, A., Gerotto, C., Giacometti, G. M., Bassi, R. & Morosinotto, T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc. Natl Acad. Sci. USA 107, 11128–11133 (2010).

    Article  CAS  Google Scholar 

  10. Tokutsu, R. & Minagawa, J. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 110, 10016–10021 (2013).

    Article  CAS  Google Scholar 

  11. Pinnola, A. et al. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25, 3519–3534 (2013).

    Article  CAS  Google Scholar 

  12. Pinnola, A. et al. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment–protein complex catalyzing non-photochemical quenching, in Nicotiana sp. J. Biol. Chem. 290, 24340–24354 (2015).

    Article  CAS  Google Scholar 

  13. Pinnola, A. et al. Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. Plant Cell 27, 3213–3227 (2015).

    Article  CAS  Google Scholar 

  14. Maruyama, S., Tokutsu, R. & Minagawa, J. Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii. Plant Cell Physiol. 55, 1304–1310 (2014).

    Article  CAS  Google Scholar 

  15. Liguori, N., Novoderezhkin, V., Roy, L. M., van Grondelle, R. & Croce, R. Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1857, 1514–1523 (2016).

    Article  CAS  Google Scholar 

  16. Liguori, N., Roy, L. M., Opacic, M., Durand, G. & Croce, R. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135, 18339–18342 (2013).

    Article  CAS  Google Scholar 

  17. Ballottari, M. et al. Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J. Biol. Chem. 291, 7334–7346 (2016).

    Article  CAS  Google Scholar 

  18. Dinc, E. et al. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc. Natl Acad. Sci. USA 113, 7673–7678 (2016).

    Article  CAS  Google Scholar 

  19. Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  Google Scholar 

  20. Staleva, H. et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–291 (2015).

    Article  CAS  Google Scholar 

  21. Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl Acad. Sci. USA 106, 12311–12316 (2009).

    Article  CAS  Google Scholar 

  22. Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  CAS  Google Scholar 

  23. Ahn, T. K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  Google Scholar 

  24. Wahadoszamen, M., Berera, R., Ara, A. M., Romero, E. & van Grondelle, R. Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys. Chem. Chem. Phys. 14, 759–766 (2012).

    Article  CAS  Google Scholar 

  25. Pinnola, A. et al. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochim. Biophys. Acta 1857, 1870–1878 (2016).

    Article  CAS  Google Scholar 

  26. Krüger, T. P. et al. Controlled disorder in plant lightharvesting complex II explains its photoprotective role. Biophys. J. 102, 2669–2676 (2012).

    Article  Google Scholar 

  27. Krüger, T. P. et al. The specificity of controlled protein disorder in the photoprotection of plants. Biophys. J. 105, 1018–1026 (2013).

    Article  Google Scholar 

  28. Krüger, T. P., Ilioaia, C., Johnson, M. P., Ruban, A. V. & van Grondelle, R. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. Biochim. Biophys. Acta 1837, 1027–1038 (2014).

    Article  Google Scholar 

  29. Schlau-Cohen, G. S. et al. Single-molecule identification of quenched and unquenched states of lhcii. J. Phys. Chem. Lett. 6, 860–867 (2015).

    Article  CAS  Google Scholar 

  30. Natali, A. et al. Light-harvesting complexes (LHCS) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. J. Biol. Chem. 291, 16730–16739 (2016).

    Article  CAS  Google Scholar 

  31. Novoderezhkin, V. I., Palacios, M. A., Van Amerongen, H. & Van Grondelle, R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J. Phys. Chem. B 109, 10493–10504 (2005).

    Article  CAS  Google Scholar 

  32. Schlau-Cohen, G. S. et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B 113, 15352–15363 (2009).

    Article  CAS  Google Scholar 

  33. Wentworth, M., Ruban, A. V. & Horton, P. Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II lightharvesting complexes. J. Biol. Chem. 278, 21845–21850 (2003).

    Article  CAS  Google Scholar 

  34. Zaks, J., Amarnath, K., Kramer, D. M., Niyogi, K. K. & Fleming, G. R. A kinetic model of rapidly reversible nonphotochemical quenching. Proc. Natl Acad. Sci. USA 109, 15757–15762 (2012).

    Article  CAS  Google Scholar 

  35. Zaks, J., Amarnath, K., Sylak-Glassman, E. J. & Fleming, G. R. Models and measurements of energy-dependent quenching. Photosynth. Res. 116, 389–409 (2013).

    Article  CAS  Google Scholar 

  36. Arnoux, P., Morosinotto, T., Saga, G., Bassi, R. & Pignol, D. A structural basis for the pH-dependent xanthophylls cycle in Arabidopsis thaliana. Plant Cell 21, 2036–2044 (2009).

    Article  CAS  Google Scholar 

  37. Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 1817, 26–43 (2012).

    Article  CAS  Google Scholar 

  38. de Wijn, R. & van Gorkom, H. J. Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40, 11912–11922 (2001).

    Article  CAS  Google Scholar 

  39. Hald, S., Nandha, B., Gallois, P. & Johnson, G. N. Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim. Biophys. Acta 1777, 433–440 (2008).

    Article  CAS  Google Scholar 

  40. Chmeliov, J. et al. The nature of self-regulation in photosynthetic light-harvesting antenna. Nat. Plants 2, 16045 (2016).

    Article  CAS  Google Scholar 

  41. Van Oort, B., van Hoek, A., Ruban, A. V. & van Amerongen, H. Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J. Phys. Chem. B 111, 7631–7637 (2007).

    Article  CAS  Google Scholar 

  42. Chan, T. et al. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS ONE 7, e52100 (2012).

    Article  CAS  Google Scholar 

  43. Kalaji, H. M. et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38, 102 (2016).

    Article  Google Scholar 

  44. Alboresi, A., Caffarri, S., Nogue, F., Bassi, R. & Morosinotto, T. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS ONE 3, e2033 (2008).

    Article  Google Scholar 

  45. Niyogi, K. K. & Truong, T. B. Evolution of flexible nonphotochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013).

    Article  CAS  Google Scholar 

  46. Morosinotto, T. & Bassi, R. in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria 315–331 (Springer, 2014).

    Book  Google Scholar 

  47. Remelli, R., Varotto, C., Sandonà, D., Croce, R. & Bassi, R. Chlorophyll binding to monomeric light-harvesting complex; a mutation analysis of chromophore-binding residues. J. Biol. Chem. 274, 33510–33521 (1999).

    Article  CAS  Google Scholar 

  48. Croce, R., Weiss, S. & Bassi, R. Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J. Biol. Chem. 274, 29613–29623 (1999).

    Article  CAS  Google Scholar 

  49. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  Google Scholar 

  50. Swoboda, M. et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6, 6364–6369 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001088 (MIT) and a CIFAR Azrieli Global Scholar Award to G.S.S.-C., and the EEC projects ACCLIPHOT (PITN-GA-2012-316427) and SE2B (675006-SE2B) to R.B.

Author information

Authors and Affiliations

Authors

Contributions

T.K., R.B. and G.S.S.-C. conceived and designed the experiments. T.K. and W.J.C. performed the experiments. T.K. and G.S.S.-C. analysed the data. A.P., L.D. and R.B. contributed materials and analysis tools. T.K. and G.S.S.-C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gabriela S. Schlau-Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 13267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, T., Pinnola, A., Chen, W. et al. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nature Chem 9, 772–778 (2017). https://doi.org/10.1038/nchem.2818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing