Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A spindle-independent cleavage pathway controls germ cell formation in Drosophila

Abstract

The primordial germ cells (PGCs) are the first cells to form during Drosophila melanogaster embryogenesis. Whereas the process of somatic cell formation has been studied in detail, the mechanics of PGC formation are poorly understood. Here, using four-dimensional multi-photon imaging combined with genetic and pharmacological manipulations, we find that PGC formation requires an anaphase spindle-independent cleavage pathway. In addition to using core regulators of cleavage, including the small GTPase RhoA (Drosophila rho1) and the Rho-associated kinase, ROCK (Drosophila drok), we show that this pathway requires Germ cell-less (GCL), a conserved BTB-domain protein not previously implicated in cleavage mechanics. This alternative form of cell formation suggests that organisms have evolved multiple molecular strategies for regulating the cytoskeleton during cleavage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anillin–GFP and Myosin–GFP localize to paired cleavage furrows during Drosophila PGC formation.
Figure 2: A spindle-independent cleavage pathway directs BF cleavage.
Figure 3: Germ cell-less is required for BF constriction.
Figure 4: Germ cell-less is a rate-limiting component of BF constriction.
Figure 5: Mis-expression of Germ cell-less with Anillin is sufficient for ectopic cell formation.

Similar content being viewed by others

References

  1. Sullivan, W. & Theurkauf, W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7, 18–22 (1995).

    Article  CAS  Google Scholar 

  2. Glover, D. M. Mitosis in the Drosophila embryo–in and out of control. Trends Genet. 7, 125–132 (1991).

    Article  CAS  Google Scholar 

  3. Edgar, B. A., Kiehle, C. P. & Schubiger, G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365–372 (1986).

    Article  CAS  Google Scholar 

  4. Foe, V. E., Field, C. M. & Odell, G. M. Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos. Development 127, 1767–1787 (2000).

    CAS  PubMed  Google Scholar 

  5. Karr, T. L. & Alberts, B. M. Organization of the cytoskeleton in early Drosophila embryos. J. Cell Biol. 102, 1494–1509 (1986).

    Article  CAS  Google Scholar 

  6. Wieschaus, E. & Sweeton, D. Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos. Development 104, 483–493 (1988).

    CAS  PubMed  Google Scholar 

  7. Simpson, L. & Wieschaus, E. Zygotic activity of the nullo-locus is required to stabilize the actin myosin network during cellularization in Drosophila. Development 110, 851–863 (1990).

    CAS  PubMed  Google Scholar 

  8. Schejter, E. D. & Wieschaus, E. Bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo. Cell 75, 373–385 (1993).

    Article  CAS  Google Scholar 

  9. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    Article  CAS  Google Scholar 

  10. Lecuit, T., Samanta, R. & Wieschaus, E. Slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev. Cell 2, 425–436 (2002).

    Article  CAS  Google Scholar 

  11. Thomas, J. H. & Wieschaus, E. src64 and tec29 are required for microfilament contraction during Drosophila cellularization. Development 131, 863–871 (2004).

    Article  CAS  Google Scholar 

  12. Stein, J. A., Broihier, H. T., Moore, L. A. & Lehmann, R. Slow as molasses is required for polarized membrane growth and germ cell migration in Drosophila. Development 129, 3925–3934 (2002).

    CAS  PubMed  Google Scholar 

  13. Ephrussi, A. & Lehmann, R. Induction of germ cell formation by oskar. Nature 358, 387–392 (1992).

    Article  CAS  Google Scholar 

  14. Mahowald, A. Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203, 187–213 (2001).

    Article  CAS  Google Scholar 

  15. Green, R. A., Paluch, E. & Oegema, K. Cytokinesis in animal cells. Annu. Rev. Cell Dev. Biol. 28, 29–58 (2012).

    Article  CAS  Google Scholar 

  16. Field, C. M., Coughlin, M., Doberstein, S., Marty, T. & Sullivan, W. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132, 2849–2860 (2005).

    Article  CAS  Google Scholar 

  17. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994).

    CAS  PubMed  Google Scholar 

  18. Afshar, K., Stuart, B. & Wasserman, S. A. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127, 1887–1897 (2000).

    CAS  PubMed  Google Scholar 

  19. Jongens, T. A., Hay, B., Jan, L. Y. & Jan, Y. N. The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell 70, 569–584 (1992).

    Article  CAS  Google Scholar 

  20. Warn, R. M., Smith, L. & Warn, A. Three distinct distributions of F-actin occur during the divisions of polar surface caps to produce pole cells in Drosophila embryos. J. Cell Biol. 100, 1010–1015 (1985).

    Article  CAS  Google Scholar 

  21. Karess, R. E. et al. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell 65, 1177–1189 (1991).

    Article  CAS  Google Scholar 

  22. Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995).

    Article  CAS  Google Scholar 

  23. Hickson, G. R. X. & O’Farrell, P. H. Anillin: a pivotal organizer of the cytokinetic machinery. Biochem. Soc. Trans. 36, 439–441 (2008).

    Article  CAS  Google Scholar 

  24. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  Google Scholar 

  25. Hickson, G. R. X. & O’Farrell, P. H. Rho-dependent control of anillin behavior during cytokinesis. J. Cell Biol. 180, 285–294 (2008).

    Article  CAS  Google Scholar 

  26. Aktories, K., Braun, U., Rosener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    Article  CAS  Google Scholar 

  27. Narumiya, S., Sekine, A. & Fujiwara, M. Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J. Biol. Chem. 263, 17255–17257 (1988).

    CAS  PubMed  Google Scholar 

  28. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  Google Scholar 

  29. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    Article  CAS  Google Scholar 

  30. Narumiya, S., Ishizaki, T. & Uehata, M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284 (2000).

    Article  CAS  Google Scholar 

  31. Royou, A., Sullivan, W. & Karess, R. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 158, 127–137 (2002).

    Article  CAS  Google Scholar 

  32. Yuce, O., Piekny, A. & Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    Article  Google Scholar 

  33. Su, K. C., Takaki, T. & Petronczki, M. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev. Cell 21, 1104–1115 (2011).

    Article  CAS  Google Scholar 

  34. Leatherman, J. L., Levin, L., Boero, J. & Jongens, T. A. germ cell-less acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr. Biol. 12, 1681–1685 (2002).

    Article  CAS  Google Scholar 

  35. Jongens, T. A., Ackerman, L. D., Swedlow, J. R., Jan, L. Y. & Jan, Y. N. Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila. Gene. Dev. 8, 2123–2136 (1994).

    Article  CAS  Google Scholar 

  36. Lehner, C. F. The pebble gene is required for cytokinesis in Drosophila. J. Cell Sci. 103, 1021–1030 (1992).

    PubMed  Google Scholar 

  37. Civelekoglu-Scholey, G. & Scholey, J. M. Mitotic force generators and chromosome segregation. Cell. Mol. Life Sci. 67, 2231–2250 (2010).

    Article  CAS  Google Scholar 

  38. Cabernard, C., Prehoda, K. E. & Doe, C. Q. A spindle-independent cleavage furrow positioning pathway. Nature 467, 91–94 (2010).

    Article  CAS  Google Scholar 

  39. Hejnol, A. & Pfannenstiel, H. D. Myosin and actin are necessary for polar lobe formation and resorption in Ilyanassa obsoleta embryos. Dev. Genet. Evol. 208, 229–233 (1998).

    Article  CAS  Google Scholar 

  40. Conrad, G. W., Schantz, A. R. & Patron, R. R. Mechanisms of polarlobe formation in fertilized eggs of molluscs. Ann. NY Acad. Sci. 582, 273–294 (1990).

    Article  CAS  Google Scholar 

  41. De la Luna, S., Allen, K. E., Mason, S. L. & La Thangue, N. B. Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO J. 18, 212–228 (1999).

    Article  CAS  Google Scholar 

  42. Leatherman, J. L., Kaestner, K. H. & Jongens, T. A. Identification of a mouse germ cell-less homologue with conserved activity in Drosophila. Mech. Dev. 92, 145–153 (2000).

    Article  CAS  Google Scholar 

  43. Kimura, T. et al. Mouse germ cell-less as an essential component for nuclear integrity. Mol. Cell. Biol. 23, 1304–1315 (2003).

    Article  CAS  Google Scholar 

  44. Kleiman, S. E. et al. Reduced human germ cell-less (HGCL) expression in azoospermic men with severe germinal cell impairment. J. Androl. 24, 670–675 (2003).

    Article  CAS  Google Scholar 

  45. Silverman-Gavrila, R., Hales, K. & Wilde, A. Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase ran. Mol. Biol. Cell 19, 3735–3744 (2008).

    Article  CAS  Google Scholar 

  46. Sano, H., Nakamura, A. & Kobayashi, S. Identification of a transcriptional regulatory region for germline-specific expression of vasa gene in Drosophila melanogaster. Mech. Dev. 112, 129–139 (2002).

    Article  CAS  Google Scholar 

  47. Van Doren, M., Williamson, A. L. & Lehmann, R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246 (1998).

    Article  CAS  Google Scholar 

  48. Schubiger, G. & Edgar, B. Using inhibitors to study embryogenesis. Methods Cell. Biol. 44, 697–713 (1994).

    Article  CAS  Google Scholar 

  49. Theurkauf, W. E. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell. Biol. 44, 489–505 (1994).

    Article  CAS  Google Scholar 

  50. Rothwell, W. F. & Sullivan, W. Fixation of Drosophila embryos. CSH Protoc.http://dx.doi.org/10.1101/pdb.prot4827 (2007).

Download references

Acknowledgements

We thank all members of the Lehmann laboratory for discussions and reagents. We thank A. Blum, S. Burden, T. Hurd, M. Slaidina, F. Teixeira and A. Zamparini for critical reading of the manuscript. We also thank S. Burden, H. Knaut, J. Nance, G. Schubiger, S. Small, J. Treisman and E. Wieschaus for discussions during the course of this work. We thank the Drosophila Bloomington Stock Center, T. Jongens, C. Fields, H. Sano, and A. Wilde for reagents. This work was supported by a NSF Predoctoral Fellowship to R.M.C. R.L. is a Howard Hughes Medical Institute Investigator. We dedicate this manuscript to the memory of G. Schubiger whose work in the early Drosophila embryo largely inspired the experiments presented here.

Author information

Authors and Affiliations

Authors

Contributions

R.M.C and R.L. conceived the project. R.M.C carried out the experiments and analysed the data. R.M.C and R.L. wrote the paper.

Corresponding author

Correspondence to Ruth Lehmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 441 kb)

PGC formation in an embryo expressing Anillin–GFP.

This video shows four paired furrows forming and then constricting. (MOV 158 kb)

Paired furrow constriction in a Myosin–GFP and Vasa-KO embryo.

This video shows a single paired furrow constricting. Myosin–GFP (green) and Vasa-KO (red). (MOV 69 kb)

Anillin–GFP expression at the BF following DMSO injection.

DMSO injection does not disrupt the localization of Anillin at the BF. (MOV 20 kb)

Anillin–GFP expression at the BF following C3 peptide injection.

C3 peptide injection does disrupt the localization of Anillin at the BF. (MOV 31 kb)

BF constriction following colcemid injection in an embryo expressing Anillin–GFP.

Note that although the BF constricts, the AF does not form. (MOV 54 kb)

PGC formation in a gcl mutant; embryo expressing Anillin–GFP.

This video shows that the BF fails to constrict in gcl mutants. (MOV 159 kb)

BF constriction following colcemid injection in an embryo expressing Anillin–GFP.

Note that although the BF constricts, the AF does not form. (MOV 69 kb)

BF constriction following colcemid injection in a gcl mutant; embryo expressing Anillin–GFP.

Note that the BF fails to constrict. (MOV 78 kb)

BF constriction following in an embryo expressing Anillin–GFP. (MOV 11 kb)

BF constriction in a gcl mutant; embryo expressing Anillin–GFP. (MOV 9 kb)

BF constriction following colcemid injection in an embryo over-expressing gcl and expressing Anillin–GFP. (MOV 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinalli, R., Lehmann, R. A spindle-independent cleavage pathway controls germ cell formation in Drosophila. Nat Cell Biol 15, 839–845 (2013). https://doi.org/10.1038/ncb2761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing