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            Abstract
Levels of gene expression underpin organismal phenotypes1,2, but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts4,5. Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic6 (0.04%), and transcripts that display lower levels of expression and stochastic noise7,8,9 and higher levels of plasticity9 are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity9. Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes4,5, but that the efficacy of selection is genetically constrained under drought conditions10. Drought selected for earlier flowering11,12 and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering13—marking this gene as a drought-escape gene11,12. The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.
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                    Fig. 1: The strength and pattern of selection on heritable rice-leaf transcript levels differ across field environments.[image: ]


Fig. 2: Gene-expression level, stochasticity, plasticity, tissue specificity and connectivity influence microevolutionary rates of expression change.[image: ]


Fig. 3: Transcripts under selection could affect fitness through regulating early growth vigour and flowering time.[image: ]


Fig. 4: Selection targets expression patterns in different biological processes in wet and dry conditions.[image: ]



                


                
                    
                        
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        The complex polyploid genome architecture of sugarcane
                                        
                                    

                                    
                                        Article
                                         Open access
                                         27 March 2024
                                    

                                

                                A. L. Healey, O. Garsmeur, … A. D’Hont

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Technology-enabled great leap in deciphering plant genomes
                                        
                                    

                                    
                                        Article
                                        
                                         20 March 2024
                                    

                                

                                Lingjuan Xie, Xiaojiao Gong, … Longjiang Fan

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Heritable microbiome variation is correlated with source environment in locally adapted maize varieties
                                        
                                    

                                    
                                        Article
                                        
                                         21 March 2024
                                    

                                

                                Xiaoming He, Danning Wang, … Peng Yu

                            
                        

                    
                

            
        
            
        
    
                    
                
            

            
                Data availability

              
              Raw FASTQ reads for 188 accessions with resequenced genomes were downloaded from the SRA under SRA BioProject accession numbers PRJNA422249 and PRJNA557122. Raw FASTQ reads for a further 27 accessions included in the 3K-RG project were downloaded from the SRA under BioProject accession number PRJEB6180. RNA sequence data that support the findings of this study have been deposited under SRA BioProject accession number PRJNA588478. Processed RNA expression count data have been deposited in Zenodo (https://zenodo.org/record/3533431 with DOI 10.5281/zenodo.3533431), alongside a sample metadata file with a key to the RNA sequence data in SRA BioProject accession number PRJNA588478. This key can also be found in Supplementary Table 4. Source Data for Figs. 1–4 and Extended Data Figs. 1–8 are provided with the paper.

            

Code availability

              
              Selection analyses were run using custom-made scripts in Python version 2.7, which are available in Supplementary Notes 1, 2, and on GitHub in repositories icalic/Linear-regression-analysis (https://github.com/icalic/Linear-regression-analysis.git) and icalic/Logistic-regression-analysis (https://github.com/icalic/Logistic-regression-analysis.git). For all other analyses we used previously developed, publicly available software and code: leaf area was assessed using ImageJ v.1.52 and GIMP v.2.10.0; RNA-seq data were processed and analysed using Drop-seq tools v.1.12, STAR aligner v.020201, Picard tools v.2.9.0, DChip v.2010.01 and R v.3.4.3 packages edgeR v.3.14 and lme4 v.1.1; gene-set enrichment analyses were performed using PlantGSEA v.1; statistical analyses were performed in R v.3.4.3, further using packages lme4 v.1.1 and corpcor v.1.6.9; and genome analyses were performed using bbduk v.37.66, bwa-mem v.0.7.16a-r1181, the GATK GenotypeGVCFs engine v.3.8-0-ge9d806836, vcftools v.0.1.15, jvarkit suite v.1, Beagle v.4.1, plink v.1.9 and GAPIT v.3.
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Extended data figures and tables

Extended Data Fig. 1 Experimental setup.
a, Geographical origins of 220 O. sativa accessions, of which 4 constitute additionally replicated checks (Supplementary Table 1). Seven accessions that are not from Eurasia or Africa are not shown. Varietal group (vg.) Indica accessions are indicated in indigo and vg. Japonica accessions are indicated in jade. Map data ©2019 Google. b, Populations of Indica and Japonica accessions (planted in triplicate alongside one another) were monitored for total lifetime fitness in wet (magenta) and dry (blue) fields. Both fields had identical layouts. Numbers reflect Indica populations with 3 × 136 accessions = 408 individuals planted in each field; Extended Data Fig. 3 shows Japonica populations. Under drought conditions, both multiplicative fitness components (flowering success (lime) and fecundity (green)) were relevant (multiplying to total lifetime fitness), but in wet conditions only the latter was relevant (fecundity equating to total lifetime fitness, magenta). c, Drought exerts truncating selection on the populations (declining and shifting blue versus magenta bar), and end-of-season was reached earlier under drought conditions. d, Cumulative rainfall shows one major rainfall event that caused the rainout shelter over the dry field to close temporarily after the start of the drought treatment and the sampling of leaf tissue for RNA sequencing (>51 DAS). e, During the period of flowering (>51 DAS), there was an increasing deficit in soil water potential. f, g, Patterns of volumetric soil moisture and vapour pressure deficit (VPD) were consistent with the pattern of soil water potential. Lighter shades of grey in f indicate deeper layers of soil. Grey and mustard lines in g indicate the VPD in the wet and dry field, respectively. h, Day length increased over the course of the experiment. i, Air temperature generally increased over the course of the experiment (grey and mustard lines indicate the wet and dry field, respectively).

                          Source Data
                        


Extended Data Fig. 2 Systems genetics of gene expression in the Indica populations in wet and dry field environments.
a, Environmental bias for transcript expression. Magenta and blue dots represent transcripts showing a 1.5-fold difference in expression between the wet and dry field environments, respectively. ANOVA, Indica environment FDR-adjusted q < 0.001, n = 136 accessions. b, Distribution of cross-environment genetic correlations (rWD) for transcripts showing significant (blue) genotype × environment (G × E) variance. ANOVA, Indica genotype × environment FDR-adjusted q < 0.001, n = 136 accessions.

                          Source Data
                        


Extended Data Fig. 3 Systems genetics of gene expression in the Japonica populations in wet and dry field environments.
a, Monitoring the Japonica populations, with 3 × 84 accessions = 252 individuals planted in both the wet and dry fields, for flowering success, fecundity fitness and total lifetime fitness (legend as in Extended Data Fig. 1b, c). b, Environmental bias for transcript expression. Magenta and blue dots represent transcripts showing a 1.5-fold difference in expression between the wet and dry field environments, respectively. ANOVA, Japonica environment FDR-adjusted q < 0.01, n = 84 accessions. c, Distribution of broad-sense heritabilities (H2) for transcripts with significant expression polymorphism. ANOVA, Japonica genotype FDR-adjusted q < 0.01, n = 84 accessions. d, Distribution of cross-environment genetic correlations (rWD) for transcripts showing significant (blue) genotype × environment (G × E) variance. ANOVA, Japonica genotype × environment FDR-adjusted q < 0.01, n = 84 accessions.

                          Source Data
                        


Extended Data Fig. 4 The strength and pattern of selection on Indica rice-leaf transcript levels under drought conditions differ across fitness components.
a, The strength of selection |S| on gene expression differed between selection for flowering success (lime), and fecundity (green) in the dry field. Mann–Whitney U-test, two-sided P < 0.001, n = 15,343. b, Positive directional selection (n = 11,304) was stronger than negative selection (n = 4,039) for fecundity under drought (green) (Mann–Whitney U-test, two-sided P < 0.001), and selection for flowering success showed higher absolute values (Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,343). c, Patterns of quadratic selection differed significantly for the two fitness components. Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,343. d, Patterns of conditional neutrality (light grey) and antagonistic pleiotropy (lime and green for transcripts beneficial for flowering success and fecundity, respectively) for gene expression under drought conditions. Black indicates transcripts that experienced selection in the same direction for both fitness components.
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Extended Data Fig. 5 Stochastic expression noise and transcript connectivity limit the efficacy of selection on gene expression.
a, b, Partial correlation analyses of factors that negatively (grey) and positively (mustard) influence the strength of selection |S| on gene expression for flowering success (a) and fecundity (b) fitness in dry conditions. Dots indicate statistical significance of Pearson’s partial r (t-test, two-sided P < 0.05, n = 14,753) (Supplementary Table 14). c, Global expression stochasticity limits fecundity under drought conditions. Spearman’s ρ = −0.174, t-test, two-sided P = 0.042, n = 136 accessions. d, As in wet conditions, |S| is bounded by expression connectivity under drought conditions. Kruskal–Wallis test, P = 0.0008, n = 12,502 transcripts. Left, box plot with centre line = median, cross = mean, box limits = upper and lower quartiles, whiskers = 1.5 × interquartile range, points = outliers. Right, mean ± s.e.m. e, In dry as well as in wet conditions, |S| is limited by gene regulatory constraints as assessed through the number of cis-regulatory elements in the promoter (n = 3,907 transcripts, Mann–Whitney U-test, two-sided P = 0.000015), and the number of transcription factors regulating a gene (n = 2,905 transcripts, Mann–Whitney U-test, two-sided P = 0.0027) illustrated for selection for total lifetime fitness under drought. Left, boxes and whiskers as in d. Right, mean ± s.e.m.
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Extended Data Fig. 6 Distributions of transcript–trait correlations for the three higher-level traits measured in the dry field environment.
a, Absolute Pearson’s correlations |r| of transcripts with leaf area (green). n = 15,635 transcripts. The cloud delineates transcripts (listed) that show significant linear or quadratic selection differentials for fecundity under drought conditions, and significant correlations with leaf area (Supplementary Text). b, Absolute Pearson’s correlations |r| of transcripts with chlorophyll concentration (green). n = 15,635 transcripts. The cloud delineates a transcript that shows a significant quadratic selection differential for fecundity under drought conditions, and a significant correlation with chlorophyll concentration (Supplementary Text). c, Absolute Pearson’s correlations |r| of transcripts with flowering time (lime). n = 15,635 transcripts. The cloud delineates transcripts (listed) that show significant linear selection differentials for flowering success under drought conditions, and significant correlations with early flowering (Supplementary Text).

                          Source Data
                        


Extended Data Figure 7 Genome-wide association mapping of the genetic architecture of transcripts that covary significantly with fitness in the Indica population under drought conditions.
Three out of eight transcripts are partially controlled by trans-eQTLs (illustrated for expression of the glycine-rich family protein-coding gene Os11g0209000 under drought conditions). Supplementary Table 27 provides results for other transcripts and for expression principal components or eigengenes as suites of transcripts. a, PCA of 179,634 SNP markers from the Indica population that were selected for analysis; the three principal components, plus a fourth, were included as cofactors in the multi-locus linear mixed model. b, Distribution of expected versus observed P values for associations between SNP markers and Os11g0209000 expression in a Q–Q plot. n = 131 genotypes; multi-locus linear mixed model, two-sided, Bonferroni-adjusted P < 0.05 for 179,634 SNP markers. c, The Manhattan plot indicates two significant trans-eQTL peaks for expression of Os11g0209000 (gene location indicated with vertical red bar). Only the top approximately 5% of SNPs (10,000 SNPs) are shown.

                          Source Data
                        


Extended Data Fig. 8 Genome-wide association mapping for fitness in the wet and dry field environments.
Taking the top approximately 0.5% of SNPs (1,000 SNPs) with the strongest association to total lifetime fitness in the wet (magenta) and dry (blue) field conditions after genome-wide association mapping, we observed no enrichment for transcripts (n = 809 and 142 transcripts in the wet and dry fields, respectively) that were expressed in the leaves and had significant linear selection differentials S (n = 408 plants, t-test, two-sided, unadjusted P < 0.05) among transcripts (n = 1,960 transcripts in the wet field and n = 1,671 transcripts in the dry field) from genes in 100-kb regions surrounding these SNPs, compared to transcripts from genes in other genomic regions (χ2, not significant (ns); two-sided P = 0.862 for the wet field and P = 0.85 for the dry field). Supplementary Table 27 provides genome-wide association mapping results for total lifetime fitness in wet and dry conditions, and for flowering success and fecundity under drought conditions.

                          Source Data
                        


Extended Data Table 1 Phenotypic selection gradients, G-matrices and outcomes of selection for transcript levels in wet and dry conditionsFull size table


Extended Data Table 2 Phenotypic selection gradients on transcript levels for flowering success, fecundity and lifetime fitness in dry conditionsFull size table
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