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            Abstract
Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1,2,3,4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed thatâ€”consistent with theory predictionsâ€”small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance andÂ tissue curvature as fundamental determinants of epithelial tumorigenesis.
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                    Fig. 1: FLASH imaging of the intact pancreas and visualization of the ductal tree.[image: ]


Fig. 2: Heterogeneity of neoplasia induction in the pancreatic ducts.[image: ]


Fig. 3: Duct diameter instruction of lesion morphology.[image: ]


Fig. 4: Lesion morphology dependence on tension imbalance and tissue curvature.[image: ]
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              All relevant data and protocols are included within the paper, Extended Data and Supplementary Information. Source Data for Figs. 1d, f, 2iâ€“k, m, 3d, 4a, b, d and Extended Data Figs. 1d, f, 2b, 5e, 6bâ€“g, iâ€“l, 7d, f, i, j, m, n, 8aâ€“d, f, h, 10e, f are provided with this paper. The original datasets and resulting analyses, as well as methodological details, are available from the corresponding authors upon reasonable request.
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Extended data figures and tables

Extended Data Fig. 1 Preserved organ integrity after FLASH.
a, FLASH staining of an insulin (Ins)â€“GFP reporter mouse for amylase (Amy), Krt19 and Insâ€“GFP. Left, 3D reconstruction that demonstrates the complex organization of islets and pancreatic ducts. Scale bar, 100 Î¼m. Right panels show an optical section through the area indicated in the left panel (white dotted rectangle), showing preserved compartmentalization into exocrine and endocrine glands as seen by mutually exclusive staining for Amy, Krt19 and Insâ€“GFP. Scale bars, 50 Î¼m. Representative of five mice. b, Three-dimensional view of a high-calibre duct (32-Î¼m diameter) stained for Krt19 and DNA, demonstrating preserved epithelial integrity. Scale bar, 50 Î¼m. bâ€², Left, optical section through the indicated area in b (red dashed rectangle), demonstrating the continuous duct-cell monolayer and preserved duct lumen. Scale bar, 30 Î¼m. Representative of six mice. Right, staining for Krt19 and DNA on a 4-Î¼m tissue section of paraffin-embedded pancreas. Scale bar, 30 Î¼m. c, FLASH staining for tdTomato (tdTOM) and Krt19 on pancreata of Rosa26CAG-tdTomato;Hnf1bcreERT2 mice without (left) and with (right) intraperitoneal injection of 100 Î¼g tamoxifen per gram bodyweight. Scale bars, 500 Î¼m. Representative of three mice. d, Arborization of the ductal tree. Each dot represents one duct and lines indicate ramification. For three Krt19-stained pancreata, z-stacks of at least 30 random high-magnification views were taken. Per view, the largest duct was identified and diameters were measured for four subsequent branching ducts to categorize the mode of arborization. For ducts with more than one furcation, the sequence was continued with the biggest duct ramifying from it. Terminal duct cells were assigned a duct diameter of 0 Î¼m to indicate ending of the ductal tree. e, Cell division direction was measured on two-cell clones from tamoxifen-treated Rosa26LSL-Confetti;Hnf1bcreERT2 mice as the angle determined with respect to the line connecting both nuclei and the directionality of the duct (n = 263 clones, 5 mice). f, Direction of cell division and cell aspect ratio in ducts of varying diameter. Solid lines represent exponential fits. Cell division, n = 263 clones, 5 mice; aspect ratio, n = 120 ducts, 7 mice.

                          Source Data
                        


Extended Data Fig. 2 Exophytic and endophytic neoplasia in KrasG12D;Fbw7flox/flox model.
a, KFCk19 mouse model for tumour induction in the ductal epithelium triggered by Fbw7 exon deletion and KrasG12D activation. b, Recombination efficiency of low-dose tamoxifen injection and number of transformed clones per number of recombined cells per duct were quantified one week after tamoxifen injection in KFCk19 mice. EYFP-traced Krt19+ cells were quantified per duct, and total number of duct cells was estimated by dividing the duct length by the average cell length measured for this duct and multiplying this by the average number of circumscribing cells for this duct. Transformed clones were recognized as groups of more than three EYFP-traced cells sharing an interface. One dot represents one duct (112 ducts, 3 mice). c, d, KFH mouse model for alternative targeting of pancreatic ducts. d, Left, 3D rendering of exophytic neoplasia (top) and endophytic neoplasia (bottom) of KFH mice. Staining for Krt19 and tdTomato. Scale bars, 100 Î¼m. Right, H & E staining for KFH exophytic (top) and endophytic (bottom) lesions. Scale bars, 100 Î¼m. Representative of four mice. e, H & E and Alcian blueâ€“periodic acid Schiff (AB/PAS) staining for exophytic and endophytic lesions in KFCk19 mice, demonstrating non-mucinous character typical of duct-derived neoplasia2. Scale bars, 100 Î¼m. Representative of three mice. f, Experimental strategy for visualizing the connection of exophytic neoplasia with the ductal tree. The extrahepatic bile duct was cannulated at the ampulla, and the pancreas ductal tree perfused with 50 Î¼l FITC-labelled dextran (DexFITC). g, Uptake of FITC-labelled dextran by an exophytic KFCk19 lesion, demonstrating lesion connection to the ductal system. Left, 3D view; right, optical section. Scale bars, 50 Î¼m. Representative of four mice.

                          Source Data
                        


Extended Data Fig. 3 Morphology progression of acinar-derived neoplasia.
a, Schematic illustrating genetic strategy for acinar cell transformation by KrasG12D activation with concomitant p53flox/flox or Fbw7 flox/flox deletion, using Ela1â€“CreERT or Ptf1aâ€“ERT2 drivers. b, c, KrasG12D;Fbw7 flox/flox;Ela1creERT (KFEla1) mice. b, Three-dimensional view of acinar-to-ductal metaplasia, as identified by local upregulation of Krt19 expression in acinar cells. tdTomato-traced acini connected to a terminal duct are shown. Arrowhead demarcates Krt19 expression by the middle acinus, forming a small ring of acinar-derived tdTomato-traced Krt19+ cells. Scale bar, 50 Î¼m. Representative of three mice. c, Three-dimensional projection of a globular KFEla1 lesion in contact with a small-calibre duct (dotted line). Scale bar, 20 Î¼m. câ€², Optical sections of the lesion shown in c, demonstrating tdTomato tracing (top) and globular morphology (bottom). Scale bars, 20 Î¼m. Representative of three mice. dâ€“g, KrasG12D; p53flox/flox;Ela1creERT mice (KPEla1 mice). d, Three-dimensional view of a globular tdTomato-traced KPEla1 lesion connected to a terminal duct (arrowhead). Scale bar, 50 Î¼m. Representative of four mice. e, Three-dimensional projection of a large KPEla1 lesion, showing the central grape-like morphology of back-to-back globular structures and the maintained connection to several small-calibre ducts (arrowheads) at the lesion edge. Scale bar, 200 Î¼m. eâ€², Higher magnification of area indicated in e (white dotted rectangle), demonstrating the seamless connection of acinar-derived Krt19+ cells and wild-type ductal epithelium (dotted lines). Scale bar, 30 Î¼m. Representative of four mice. f, Retrograde perfusion of the ductal tree with FITC-labelled dextran, as in Extended Data Fig. 2f, demonstrating direct connection of acinar-derived lesions to the ductal system. Three-dimensional view of a KPEla1 lesion. Scale bar, 50 Î¼m. Representative of three mice. g, H & E staining of a KPEla1 lesion demonstrating globular morphology. Scale bar, 100 Î¼m. Representative of six mice. h, KrasG12D;p53flox/flox;Ptf1acreERT2 (KPPtf1a) mice. H & E staining, demonstrating globular morphology of lesions. Scale bar, 100 Î¼m. Representative of five mice.


Extended Data Fig. 4 Exophytic and endophytic neoplasia in KrasG12D;p53flox/flox models and in human pancreas.
aâ€“c, Endophytic and exophytic lesions induced by p53 deletion with KrasG12D activation upon Pdx1â€“Cre-induced whole-pancreatic recombination (in KPC mice). b, Three-dimensional view of a pancreatic region of a three-week old mouse with endophytic (rectangle labelled 1) and exophytic (rectangle labelled 2) deformations. Scale bar, 150 Î¼m. Panels labelled 1 and 2 provide higher-magnification images of the indicated areas in b. Scale bars, 50 Î¼m. In panel 1, arrowheads demarcate invaginations typical of endophytic growth. In panel 2, a dotted line marks a morphologically normal small-calibre duct in contact with a globular, exophytic lesion. Representative of six mice. c, H & E staining for exophytic (left) and endophytic (right) lesions in the KPC model. Scale bars, 100 Î¼m. Representative of six mice. d, e, Exophytic and endophytic lesions induced by p53 deletion with KrasG12D activation in pancreatic ducts (KPCk19 mice). e, Three-dimensional projection of exophytic (left) and endophytic (right) lesion shapes in KPCk19 mice. Scale bars, 100 Î¼m. Representative of three mice. f, H & E staining of tissue sections from background pancreas of a patient presenting with pancreatic ductal adenocarcinoma. Left, exophytic lesion. Right, endophytic lesion. Scale bars, 100 Î¼m. Representative of four patients.


Extended Data Fig. 5 Characterization of exophytic and endophytic neoplasia biology.
a, Proliferation of exophytic and endophytic lesions of KFCk19 mice as indicated by Ki67 staining. Scale bar, 100 Î¼m. Representative of three mice. b, Stromal composition of KFCk19 exophytic and endophytic lesions, three weeks after recombination and recruitment of cancer-associated fibroblasts as demonstrated by staining for PdgfrÎ², nestin and smooth muscle actin (SMA). For staining comparisons between endophytic and exophytic lesions, lesions in the same tissue section are shown. Scale bars, 100 Î¼m. Insets show magnified views of the area indicated in the main panel. Scale bars, 10 Î¼m. Representative of four mice. c, Staining for human cancer-associated fibroblast markers PDGFRÎ² and SMA in background pancreatic tissue of a patient with pancreatic ductal adenocarcinoma. Examples of a non-dysplastic duct, an exophytic lesion and an endophytic lesion from the same tissue section are shown. Scale bars, 100 Î¼m. Insets show magnified views of the area indicated in the main panel. Scale bars, 20 Î¼m. One patient. d, Tumour cell epithelial-to-mesenchymal transition in advanced KFCk19 exophytic and endophytic lesions, eight weeks after recombination. Scale bars, 50 Î¼m. Indicated areas are magnified on the right. Scale bars, 15 Î¼m. Cdh1 staining marks epithelial cells, vimentin (Vim) staining indicates mesenchymal character and tdTomato identifies tumour-traced cells. Representative of three mice. e, Quantification of epithelial-to-mesenchymal transition in d as the number of tdTomato-traced, Cdh1âˆ’, Vim+ cells per lesion area. Exophytic, n = 29 lesions; endophytic n = 26 lesions. Data are mean Â± s.d., âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test).
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Extended Data Fig. 6 Cortical alterations in transformed cells.
a, Schematic showing cell orientation and cell cortex organization. b, Scatter plot of apicalâ€“basal pMLC2 intensities per cell, from endophytic and exophytic lesions in KFCk19 mice. Wild type, 106 cells; transformed, 124 cells. c, Basal and apical pMLC2 intensities were extracted from the maxima of the intensity profiles of each cell from exophytic lesions (Fig. 2i) (wild type, 35 cells; transformed, 45 cells). Data are mean Â± s.d. NS, not significant (P = 0.057), âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test). d, Ratio of apical to basal pMLC2 intensity in late-stage exophytic and endophytic lesions, eight weeks after recombination (in KFCk19 mice). Endophytic, 110 cells; exophytic, 138 cells. Data are mean Â± s.d. NS, not significant (P = 0.9538) (two-sided Mannâ€“Whitney test). e, MLC2 distribution in transformed and wild-type cells of KFCk19 mice. Left, immunofluorescence staining for MLC2, Cdh1 and EYFP. Scale bar, 10 Î¼m. Right, Ratio of apical to basal MLC2 intensity. Wild type, 119 cells; transformed, 139 cells. Data are mean Â± s.d., NS, not significant, P = 0.7722 (two-sided Mannâ€“Whitney test). f, Cortactin distribution in transformed and wild-type cells of KFCk19 mice. Left, immunofluorescence staining for cortactin, Cdh1 and EYFP. Scale bar, 10 Î¼m. Right, ratio of apical to basal cortactin intensity. Wild type, 152 cells; transformed, 137 cells. Data are mean Â± s.d. âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test). g, pMLC2 distribution in the KPC model. Left, immunofluorescence staining for pMLC2 and Krt19. Scale bar, 10 Î¼m. Right, Basalâ€“apical pMLC2 intensity profile, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (157 cells). h, F-actin distribution in the KPC model. Immunofluorescence staining for F-actin (phalloidin) and Cdh1 on cryo-sectioned pancreata from KPC mice or wild-type littermates. Scale bar, 10 Î¼m. Quantifications are shown in Fig. 2k. Wild type, 4 mice; transformed, 3 mice. i, j, pMLC2 distribution in the KPPtf1a model of acinar cell transformation. i, Immunofluorescence staining for pMLC2, Krt19 and tdTomato. Scale bars, 10 Î¼m. Left, normal duct; middle, normal Krt19-negative acinus; right, transformed Krt19-positive tdTomato-traced cells. Asterisk indicates lumen. Representative of three mice. j, Basalâ€“apical pMLC2 intensity profiles, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (normal duct, 142 cells; normal acinus, 76 cells; transformed, 127 cells). k, Ratio of apical to basal F-actin, phosphorylated focal adhesion kinase (pFAK) and vinculin (Vnc) intensities in wild-type and transformed cells of KFCk19 mice. F-actin, 57 wild-type cells, 93 transformed cells; Vnc, 42 wild-type cells, 42 transformed cells; pFAK, 36 wild-type cells, 36 transformed cells. Data are mean Â± s.d. âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test). l, Expression of integrins in transformed cells relative to wild-type duct-cell neighbours in KFCk19 mice. Itga2, 57 wild-type cells, 57 transformed cells; Itga6, 33 wild-type cells, 33 transformed cells; Itgb1, 30 wild-type cells, 30 transformed cells. Data are mean Â± s.d. âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test).
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Extended Data Fig. 7 Role of oncogenic Kras signalling in the pMLC2 distribution of transformed epithelial cells.
aâ€“d, pMLC2 distribution in wild-type organoids after phosphatase inhibition. aâ€“c, Immunostaining for pMLC2 and Cdh1. Scale bars, 10 Î¼m. Representative of two experiments with three wild-type organoid lines. a, DMSO control. b, 2 Î¼M okadaic acid treatment. c, 5 Î¼M tautomycetin treatment. d, Ratio of apical to basal pMLC2 intensity of wild-type organoids after treatment with DMSO, okadaic acid (OA) or tautomycetin (TM). DMSO, 104 cells; okadaic acid, 70 cells; tautomycetin, 131 cells. Data are mean Â± s.d. âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test). e, pMLC2 distribution in KC mice. Immunostaining for pMLC2 and Cdh1. Scale bar, 10 Î¼m. Representative of two mice. f, Basalâ€“apical pMLC2 intensity profile of KC cells (e), measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. of 219 cells. gâ€“j, pMLC2 distribution in KPC organoids after MEK inhibition. g, h, Immunostaining for pMLC2 and Cdh1. Scale bars, 20 Î¼m. Representative of three experiments with three KPC organoid lines. g, DMSO control. h, 8 Î¼M U0126 treatment. i, Basalâ€“apical pMLC2 intensity profiles of DMSO or U0126-treated organoids, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (DMSO, 105 cells; U0126, 133 cells). j, Ratio of apical to basal pMLC2 intensity of KPC organoids after DMSO or U0126 treatment. DMSO, 105 cells; U0126, 133 cells. Data are mean Â± s.d. âˆ—âˆ—âˆ—âˆ—P < 0.0001 (two-sided Mannâ€“Whitney test). k, l, Immunostaining for pMLC2 and Cdh1. Scale bars, 20 Î¼m. k, DMSO control. l, 5 Î¼M ROCK inhibitor (H1152) treatment. Representative of two experiments with three KPC organoid lines. m, Basalâ€“apical pMLC2 intensity profiles of DMSO- or H1152-treated organoids, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (DMSO, 59 cells; H1152, 38 cells). n, Ratio of apical to basal pMLC2 intensity of KPC organoids after DMSO or H1152 treatment. DMSO, 60 cells; H1152, 37 cells. Data are mean Â± s.d. NS, not significant, P = 0.5517 (two-sided Mannâ€“Whitney test).
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Extended Data Fig. 8 Formulation of ductal transformation in the 3D vertex model and the effect of tension change.
a, Number of circumscribing cells per duct diameter (113 ducts, 8 mice). b, Relative deformation as a function of diameter (mean Â± s.e.m. from n = 10 simulations), for simulations with tension changes derived from exophytic (pink) and endophytic lesions (green). Both inputs produce deformations in good agreement with experimental observations (blue). c, Simulation of hyperproliferation without mechanical changes is not sufficient to explain the transition between exophytic and endophytic lesions (dots indicate mean Â± s.e.m. from n = 10 simulations). Experimental data from Fig. 3d are shown for comparison. Simulations were carried out as in Fig. 3d, except that mechanical parameters in transformed cells were not modified. d, Classification accuracy, defined as the fraction of exophytic and endophytic lesions that can be predicted on the basis of duct diameter, as a function of duct diameter. The accuracy is defined for each diameter (d) as (TP + TN)/(TP + FP + TN + FN), in which TP (true positive) and FP (false positive) denote the number of exophytic and endophytic deformations occurring below diameter d, and TN (true negative) and FN (false negative) denote the number of endophytic and exophytic deformations occurring above diameter d. The diameter of maximal accuracy at three weeks is used to find the location of the transition. e, Immunofluorescence staining for pMLC2, Ki67, DBA and EYFP showing pMLC2 distribution in hyperproliferating cells and wild-type duct-cell neighbours of FCk19 mice. Scale bars, 10 Î¼m. Representative of six mice. f, Basalâ€“apical pMLC2 pixel intensity profiles of normal and hyperproliferating cells. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. Twenty-eight ducts (6 mice), n = 64 Fbw7flox/flox cells, n = 93 wild-type cells. g, Immunofluorescence staining for ItgA2, Ki67, DBA and EYFP showing lack of basal integrin overexpression in hyperproliferating cells and wild-type duct-cell neighbours of FCk19 mice. Scale bars, 10 Î¼m. Representative of three mice. h, Quantification of basal Itga2 localization in hyperproliferative cells relative to wild-type duct-cell neighbours. (n = 52 wild-type cells, 51 Fbw7flox/flox cells). Data are mean Â± s.d., *P = 0.0274 (two-sided Mannâ€“Whitney test).
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Extended Data Fig. 9 Histological differentiation of benign and malignant ductal reactions.
a, Left to right, H & E stain of normal pancreas, FCk19 pancreas (hyperproliferative ducts), acute caerulein-induced pancreatitis and three-week-old KPC mice. b, Ki67 staining demonstrating proliferation in FCk19 ducts, ductal structures of acute pancreatitis and early transformation (in KPC mice). c, Staining for pMLC2 showing apicalâ€“basal redistribution of pMLC2 in transformed ductal lesions (in KPC mice) but not in normal duct cells (left), FCk19 ducts and reactive ducts. d, Itga2 is absent from the cellular membrane in normal duct cells (left) and FCk19 ducts and reactive ducts, but highly abundant in transformed ductal lesions (KPC). Scale bars, 100 Î¼m (main panels), 20 Î¼m (inset panels). All stainings are representative of six mice (normal pancreas), four mice (FCk19 and acute pancreatitis) or three mice (KPC).


Extended Data Fig. 10 Continuum theory of early lesion morphogenesis and pMLC2 distribution in lung airways and hepatic ducts.
a, We consider a continuum theory of tissue mechanics, in which the tissue is represented by a thin layer. The tissue initially has the shape of a cylinder, and we considerâ€”for simplicityâ€”deformations that are invariant along the longitudinal axis in cylindrical coordinates. The tissue has a bending elasticity and an area stretch elasticity that resists its deformation. In addition, the transformed region is subjected to a spontaneous bending-moment difference (\(\Delta {\bar{\zeta }}_{c}\)), compared to the wild-type tissue. The spontaneous bending moment arises from the difference between the tissue basal and apical surface tension (Tb and Ta, respectively). In the transformed tissue, the apical and basal surface tension (\({T}_{{\rm{a}}}^{{\rm{tf}}}\) and \({T}_{{\rm{b}}}^{{\rm{tf}}}\), respectively) differ from their values in the wild-type tissue (Ta and Tb). b, Two effects drive tissue deformation: tissue growth due to transformed cell division and growth leading to an increase in the radius of the cylindrical tissue, while the spontaneous bending-moment difference drives an inward invagination. The balance of these two effects on the transformed tissue indentation defines a threshold radius at which the indentation of the transformed tissue along the axis of symmetry vanishes. c, Calculated deformed tissue cross-sections after the introduction of a region of transformed cells, in the limit of small deformations. Blue line, deformed shape; red dotted line, original shape; the transformed cells are in the upper region. Nc is the number of cells in a tissue cross-section before cell transformation. Other parameters: \(\frac{\Delta {\bar{\zeta }}_{{\rm{c}}}{l}_{0}}{\kappa }=0.39\), Nt = 3 transformed cells in a cross-section. d, Phase diagram of direction of tumour deformation, in the limit of small deformations and small transformed region. R is the cylinder radius,\(\Delta {\bar{\zeta }}_{{\rm{c}}}\) the spontaneous bending-moment difference in the transformed tissue, and Îº the bending modulus of the tissue. Schematic examples of tissue cross-sections undergoing inward (blue area) and outward (white area) deformations are shown. e, pMLC2 distribution in lung airways. Left, immunostaining for pMLC2 and Cdh1 in KFCk19 transformed and wild-type epithelium. Star marks pMLC2high myofibroblasts located below the epithelium. Scale bars, 20 Î¼m. Right, Basalâ€“apical pMLC2 intensity profiles, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (wild type, 167 cells; transformed, 66 cells). f, pMLC2 distribution in hepatic ducts. Left, immunostaining for pMLC2 and Cdh1 in KFCk19 transformed and wild-type epithelium. Scale bars, 20 Î¼m. Right, Basalâ€“apical pMLC2 intensity profiles, measured as shown in Fig. 2h. Single-cell profiles were normalized to cellular average and aligned in length. Data are mean Â± s.e.m. (wild type, 134 cells; transformed, 284 cells).
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Video 1: Normal pancreatic ductal system.
Detail of a tdTomato-stained (red) normal pancreas from a R26-tdTomato; Hnf1b-CreERt2 mouse showing intricate arborized ducts of varying calibres. Representative of 5 mice.


Video 2: Exophytic neoplasia.
Exophytic lesion of a KFCk19 pancreas stained for Krt19 (white) and EYFP (red). Representative of 7 mice.


Video 3: Endophytic neoplasia.
Endophytic lesion of a KFCk19 pancreas stained for Krt19 (white) and EYFP (red). Representative of 7 mice.


Video 4: KFE acinar-derived lesion.
Lesion of a KFE pancreas stained for Krt19 (white) and tdTomato (red). Note connection to a normal duct. Representative of 3 mice.


Video 5: KPE acinar-derived lesion.
Lesion of a KPE pancreas stained for Krt19 (white) and tdTomato (red). Note connection to a normal duct. Representative of 4 mice.
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