Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective sp3 C–H alkylation via polarity-match-based cross-coupling

Abstract

The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective sp3 C–H alkylations via polarity-matched hydrogen-atom transfer (HAT).
Figure 2: Proposed mechanism for the triple catalytic selective sp3 C–H alkylation.
Figure 3: The scope of the alkyl bromide coupling partner in the light-enabled selective sp3 C–H alkylation.
Figure 4: Application of direct sp3 C–H alkylation in late-stage functionalization of pharmaceutical compounds.

Similar content being viewed by others

References

  1. Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016)

    Article  CAS  Google Scholar 

  2. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009)

    Article  CAS  Google Scholar 

  3. Ackermann, L. Metal-catalyzed direct alkylations of (hetero)arenes via C–H bond cleavages with unactivated alkyl halides. Chem. Commun. 46, 4866–4877 (2010)

    Article  CAS  Google Scholar 

  4. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  Google Scholar 

  5. Colby, D. A., Tsai, A. S., Bergman, R. G. & Ellman, J. A. Rhodium catalyzed chelation-assisted C–H bond functionalization reactions. Acc. Chem. Res. 45, 814–825 (2012)

    Article  CAS  Google Scholar 

  6. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013)

    Article  Google Scholar 

  7. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Palladium(II)-catalyzed ortho alkylation of benzoic acids with alkyl halides. Angew. Chem. Int. Ed. 48, 6097–6100 (2009)

    Article  CAS  Google Scholar 

  8. Aihara, Y. & Chatani, N. Nickel-catalyzed direct alkylation of C–H bonds in benzamides and acrylamides with functionalized alkyl halides via bidentate-chelation assistance. J. Am. Chem. Soc. 135, 5308–5311 (2013)

    Article  CAS  Google Scholar 

  9. Ackermann, L., Novák, P., Vicente, R. & Hofmann, N. Ruthenium-catalyzed regioselective direct alkylation of arenes with unactivated alkyl halides through C–H bond cleavage. Angew. Chem. Int. Ed. 48, 6045–6048 (2009)

    Article  CAS  Google Scholar 

  10. Ilies, L., Matsubara, T., Ichikawa, S., Asako, S. & Nakamura, E. Iron-catalyzed directed alkylation of aromatic and olefinic carboxamides with primary and secondary alkyl tosylates, mesylates, and halides. J. Am. Chem. Soc. 136, 13126–13129 (2014)

    Article  CAS  Google Scholar 

  11. Shabashov, D. & Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon−hydrogen bonds. J. Am. Chem. Soc. 132, 3965–3972 (2010)

    Article  CAS  Google Scholar 

  12. Zhang, S.-Y., Li, Q., He, G., Nack, W. A. & Chen, G. Stereoselective synthesis of β-alkylated α-amino acids via palladium-catalyzed alkylation of unactivated methylene C(sp3)–H bonds with primary alkyl halides. J. Am. Chem. Soc. 135, 12135–12141 (2013)

    Article  CAS  Google Scholar 

  13. Zhu, R.-Y., He, J., Wang, X.-C. & Yu, J.-Q. Ligand-promoted alkylation of C(sp3)–H and C(sp2)–H bonds. J. Am. Chem. Soc. 136, 13194–13197 (2014)

    Article  CAS  Google Scholar 

  14. Adams, J. et al. Rhodium acetate catalyzes the addition of carbenoids α- to ether oxygens. Tetrahedr. Lett. 30, 1749–1752 (1989)

    Article  CAS  Google Scholar 

  15. Davies, H. M. L., Venkataramani, C., Hansen, T. & Hopper, D. W. New strategic reactions for organic synthesis: catalytic asymmetric C−H activation α to nitrogen as a surrogate for the Mannich reaction. J. Am. Chem. Soc. 125, 6462–6468 (2003)

    Article  CAS  Google Scholar 

  16. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C−H bonds. Chem. Rev. 110, 704–724 (2010)

    Article  CAS  Google Scholar 

  17. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013)

    Article  CAS  Google Scholar 

  18. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016)

    Article  CAS  Google Scholar 

  19. Kärkäs, M. D., Porco, J. A. & Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116, 9683–9747 (2016)

    Article  Google Scholar 

  20. DiRocco, D. A. et al. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. 53, 4802–4806 (2014)

    Article  CAS  Google Scholar 

  21. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014)

    Article  ADS  CAS  Google Scholar 

  22. Zhang, X. & MacMillan, D. W. C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138, 13862–13865 (2016)

    Article  CAS  Google Scholar 

  23. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999)

    Article  CAS  Google Scholar 

  24. Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015)

    Article  ADS  CAS  Google Scholar 

  25. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016)

    Article  ADS  CAS  Google Scholar 

  26. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005)

    Article  CAS  Google Scholar 

  27. Durandetti, M., Devaud, M. & Périchon, J. Investigation of the reductive coupling of aryl halides and/or ethyl chloroacetate electrocatalyzed by the precursor NiX (bpy) with X = Cl, Br, or MeSO4 and bpy = 2,2′-dipyridyl. New J. Chem. 20, 659–667 (1996)

    CAS  Google Scholar 

  28. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015)

    Article  CAS  Google Scholar 

  29. Cheung, M. S., Sheong, F. K., Marder, T. B. & Lin, Z. Computational insight into nickel-catalyzed carbon–carbon versus carbon–boron coupling reactions of primary, secondary, and tertiary alkyl bromides. Chem. Eur. J. 21, 7480–7488 (2015)

    Article  CAS  Google Scholar 

  30. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH National Institute of General Medical Sciences (R01 GM078201-05) and gifts from Merck, Bristol-Myers Squibb, Eli Lilly and Johnson & Johnson. The authors thank T. Liu for assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.L., Y.L., R.W.E. and X.L. performed and analysed the experiments. C.L., Y.L., R.W.E., X. L. and D.W.C.M. designed the experiments. C.L., Y.L., R.W.E., X.L. and D.W.C.M. prepared the manuscript.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks M. Greaney and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary information regarding HAT-Alkylation – see contents page for full details. (PDF 34045 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, C., Liang, Y., Evans, R. et al. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017). https://doi.org/10.1038/nature22813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22813

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing