Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lightwave-driven quasiparticle collisions on a subcycle timescale

Abstract

Ever since Ernest Rutherford scattered α-particles from gold foils1, collision experiments have revealed insights into atoms, nuclei and elementary particles2. In solids, many-body correlations lead to characteristic resonances3—called quasiparticles—such as excitons, dropletons4, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity5. However, the extremely short lifetimes of these entities6 make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, the foundation of attosecond science9,10,11,12,13, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17,18,19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-order sideband generation in tungsten diselenide.
Figure 2: Subcycle electron–hole recollisions.
Figure 3: Quantum simulation of subcycle electron-hole collisions underlying HSG.
Figure 4: Experimental comparison of high-order sideband and high-order harmonic generation.

References

  1. Rutherford, E. The scattering of α and β particles by matter and the structure of the atom. Philos. Mag. Ser. 6 21, 669–688 (1911)

    Article  MATH  Google Scholar 

  2. Wyatt, T. High-energy colliders and the rise of the standard model. Nature 448, 274–280 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Almand-Hunter, A. E. et al. Quantum droplets of electrons and holes. Nature 506, 471–475 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Wimmer, L. et al. Terahertz control of nanotip photoemission. Nature Phys. 10, 432–436 (2014)

    Article  ADS  CAS  Google Scholar 

  16. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nature Commun. 6, 8486 (2015)

    Article  ADS  CAS  Google Scholar 

  17. Kono, J. et al. Resonant terahertz optical sideband generation from confined magnetoexcitons. Phys. Rev. Lett. 79, 1758–1761 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Liu, R. B. & Zhu, B. F. High-order THz-sideband generation in semiconductors. AIP Conf. Proc. 893, 1455–1456 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014)

    Article  ADS  CAS  Google Scholar 

  22. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vampa, G. et al. Linking high-harmonics from gases and solids. Nature 522, 462–464 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin 1999)

  26. Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014)

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge University Press, Cambridge, 2012)

  28. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2 . Nature Mater. 14, 889–893 (2015)

    Article  ADS  CAS  Google Scholar 

  29. Xu, X., Wang, Y., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014)

    Article  ADS  CAS  Google Scholar 

  30. Arora, A. et al. Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7, 10421–10429 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006)

    Article  ADS  Google Scholar 

  34. Smith, R. P. et al. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. Phys. Status Solidi B 248, 863–866 (2011)

    Article  ADS  CAS  Google Scholar 

  36. Danielson, J. R. et al. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Phys. Rev. Lett. 99, 237401 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Girndt, A., Jahnke, F., Knorr, A., Koch, S. W. & Chow, W. W. Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells. Phys. Status Solidi B 202, 725–739 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Berger, C. et al. Novel type-II material systems for laser applications in the near-infrared regime. AIP Advances 5, 047105 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012)

    Article  ADS  CAS  Google Scholar 

  40. Yan, J.-Y. Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field. Phys. Rev. B 78, 075204 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Vu, Q. T. et al. Light-induced gaps in semiconductor band-to-band transitions. Phys. Rev. Lett. 92, 217403 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Banks, H. et al. Terahertz electron-hole recollisions in GaAs/AlGaAs quantum wells: robustness to scattering by optical phonons and thermal fluctuations. Phys. Rev. Lett. 111, 267402 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Wang, H. et al. Transient nonlinear optical response from excitation induced dephasing in GaAs. Phys. Rev. Lett. 71, 1261–1264 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Peyghambarian, N. et al. Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure. Phys. Rev. Lett. 53, 2433–2436 (1984)

    Article  ADS  CAS  Google Scholar 

  46. Beal, A. R. & Liang, W. L. Excitons in 2H-WSe2 and 3R-WS2 . J. Phys. C 9, 2459–2466 (1976)

    Article  ADS  CAS  Google Scholar 

  47. Mitioglu, A. A. et al. Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields. Nano Lett. 15, 4387–4392 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Banks for critical reading of the manuscript. The work in Regensburg was supported by the European Research Council through grant number 305003 (QUANTUMsubCYCLE) and the Deutsche Forschungsgemeinschaft (through grant number HU 1598/2-1 and GRK 1570), and the work in Marburg by the Deutsche Forschungsgemeinschaft (through SFB 1083, SPP 1840 and grant numbers KI 917/2-2, KI 917/3-1). The work in Santa Barbara was supported by the National Science Foundation (through grant number DMR 1405964).

Author information

Authors and Affiliations

Authors

Contributions

F.L., M.H., M.S.S., U.H., M.K. and R.H. conceived the study. F.L., M.H., C.P.S. and R.H. carried out the experiment and analysed the data. C.P., P.N., T.K. and C.S. provided, processed and characterized the samples. U.H., J.T.S., S.W.K. and M.K. developed the quantum-mechanical model and carried out the computations. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to M. Kira or R. Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Polarization of high-order sidebands.

a, b, False-colour plot of the spectral intensity of high-order sidebands (generated under resonant, spectrally narrow, optical excitation) of orders two to eight as a function of their polarization for horizontal (a) and vertical (b) polarization of the interband excitation pulse. The polarization angle is defined such that 0° corresponds to a horizontally polarized excitation. c, Spectrally integrated sideband intensity as a function of the polarization angle.

Extended Data Figure 2 Pump-fluence dependence of time-resolved high-order sideband generation.

a, The measured high-order sideband intensity IHSG (spectrally and temporally integrated, red spheres) scales linearly with the pump fluence Φ, as indicated by a guide to the eye (black dashed line). b, The modulation depth of the spectrally integrated temporal trace of IHSG (red spheres, see Fig. 2b) decreases with increasing pump fluence, closely following a fit (black curve) proportional to the inverse square-root of the pump fluence. c, By contrast, the relative subcycle delay δscT−1 does not substantially change with increasing pump fluence. Red spheres represent the average of δscT−1 over the nine dominant, consecutive, high-order sideband peaks (see Fig. 2d) for different pump fluences; error bars indicate their standard deviation. The black dashed line marks the mean value of the displayed data points.

Extended Data Figure 3 Coherent excitonic polarization dynamics in k space.

a, Computed high-order sideband intensity IHSG (red shaded area) and driving waveform (blue). Vertical black dotted lines highlight characteristic delay times tex at extrema of IHSG. bd, Coherent interband polarization |p|2 (colour scale) as a function of time t and reciprocal space coordinate k (in units of the wave vector kBZ limiting the first Brillouin zone) for distinct delay times tex according to maximum (b, tex = 7 fs; d, tex = 28 fs) and minimum (c, tex = 18 fs) HSG emission. Horizontal white lines mark k = 0. The driving field is depicted as grey curves and the recollision times (see Fig. 3d) are highlighted by black arrows.

Extended Data Figure 4 Influence of dephasing on high-order sideband generation.

a, b, The measured sideband spectrum (shaded area) is compared with computations using constant dephasing times of T2 = 3.2 fs (a, red curve), T2 = 4 fs (b, blue curve) and a momentum-dependent dephasing model as presented in Fig. 1 (black curves; EID, excitation-induced dephasing). The sideband orders n are indicated above the relevant peaks. All spectra are normalized to the sideband peak corresponding to n = 2. The inset in a depicts the corresponding dephasing times T2(k) as a function of the wave vector k; the red (blue) horizontal line indicates a constant decay level T2 = 3.2 fs (T2 = 4 fs).

Extended Data Figure 5 Field scaling of time-resolved high-order sideband generation.

a, Scaling of the modulation depth (see discussion in Methods section ‘Influence of excitation fluence’) of temporal traces of high-order sideband intensity with the driving peak field strength. An increase in the modulation depth suggests a faster dephasing T2. b, Subcycle delay δsc in units of the driving period T averaged over the eight most-dominant sideband peaks as a function of the peak field. The error bars represent the standard deviation of the eight peaks and the dashed line depicts a linear fit to the data points.

Extended Data Figure 6 Influence of excitation-induced dephasing.

a, Terahertz waveform used in the computations. b, c, Mean electron excursion calculated with a constant dephasing T2 = 12 fs (b) and excitation-induced dephasing (c) for a delay of tex = 7 fs (see vertical dotted lines in a). The shaded areas indicate the intensity envelopes of the excitation pulse with a full-width at half-maximum of 10 fs (yellow) and 100 fs (grey). The corresponding mean momenta are shown as red and black curves, respectively. The red dashed curves show after the electron–hole collision. The dashed horizontal lines in c mark the positions in k space where the scattering time T2(k) switches from slow to fast dephasing.

Extended Data Figure 7 High-order harmonic generation in tungsten diselenide.

An intensity spectrum (blue shaded area) of THz-driven high-order harmonic generation in 60-nm-thick WSe2 shows distinct peaks at odd orders n′ = 13 to n′ = 47 (indicated by numerals) of the fundamental frequency νTHz = 22.3 THz (peak electric field in air, 21 MV cm−1; φ = 90°). An intensity spectrum for φ = 120° is also shown as a black curve. The spectral intensity has been corrected for the grating efficiency and for the quantum efficiency of the spectrograph used.

Extended Data Figure 8 Differential sideband spectroscopy.

a, b, Contours of differential spectra ΔI(ν, νopt) (colour scale) as a function of h(νν2SB) and detuning Δopt computed for an excitonic binding energy of EB = 60 meV (a) and EB = 600 meV (b). The black and grey vertical lines mark the positions of the slices shown in c and d, respectively. c, d, Snapshots of ΔI(ν, νopt) at fixed values of |h(νν2SB)| = 16 meV below (c) and above (d) the second-order sideband peak for three different binding energies EB = 60 meV (black curves), EB = 240 meV (red curves) and EB = 600 meV (blue curves).

Extended Data Figure 9 Quantitative analysis of the binding energy.

a, Measured differential spectra ΔI(ν, νopt) for three different detunings Δopt = −75 meV (shaded area), Δopt = −29 meV (black curve) and Δopt = 27 meV (red curve) as functions of ν, centred at the position of the second sideband ν2SB. b, d, f, Computed differential spectra ΔI(ν, νopt) for binding energies of EB = 60 meV (b), EB = 240 meV (d) and EB = 600 meV (f) and detunings Δopt as in the experiment shown in a. c, e, Measured (c) and calculated (e) HSG intensities (colour scale) for Δopt = 0 as functions of νHSG and delay tex.

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langer, F., Hohenleutner, M., Schmid, C. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016). https://doi.org/10.1038/nature17958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17958

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing