Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A model-tested North Atlantic Oscillation reconstruction for the past millennium

Abstract

The North Atlantic Oscillation (NAO) is the major source of variability in winter atmospheric circulation in the Northern Hemisphere, with large impacts on temperature, precipitation and storm tracks1, and therefore also on strategic sectors such as insurance2, renewable energy production3, crop yields4 and water management5. Recent developments in dynamical methods offer promise to improve seasonal NAO predictions6, but assessing potential predictability on multi-annual timescales requires documentation of past low-frequency variability in the NAO. A recent bi-proxy NAO reconstruction7 spanning the past millennium suggested that long-lasting positive NAO conditions were established during medieval times, explaining the particularly warm conditions in Europe during this period; however, these conclusions are debated. Here, we present a yearly NAO reconstruction for the past millennium, based on an initial selection of 48 annually resolved proxy records distributed around the Atlantic Ocean and built through an ensemble of multivariate regressions. We validate the approach in six past-millennium climate simulations, and show that our reconstruction outperforms the bi‐proxy index. The final reconstruction shows no persistent positive NAO during the medieval period, but suggests that positive phases were dominant during the thirteenth and fourteenth centuries. The reconstruction also reveals that a positive NAO emerges two years after strong volcanic eruptions, consistent with results obtained from models and satellite observations for the Mt Pinatubo eruption in the Philippines8,9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proxy selection.
Figure 2: Ensemble NAO reconstructions.
Figure 3: Validation of the ensemble NAO reconstructions.
Figure 4: NAO response to large volcanic eruptions.

References

  1. Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M. & Klawa, M. Loss potentials associated with European windstorms under future climate conditions. Clim. Res. 54, 1–20 (2012)

    Article  Google Scholar 

  3. Pozo-Vazquez, D., Santos-Alamillos, F., Lara-Fanego, V., Ruiz-Arias, J., Tovar-Pescador, J. & n .. in Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region Vol. 46 Advances in Global Change Research (eds Vicente-Serrano, S. M. & Trigo, R. M. ) Ch. 15 (Springer, 2011)

    Google Scholar 

  4. Kettlewell, P. S., Sothern, R. B. & Koukkari, W. L. UK wheat quality and economic value are dependent on the North Atlantic Oscillation. J. Cereal Sci. 29, 205–209 (1999)

    Article  Google Scholar 

  5. López-Moreno, J. I., Beguería, S., Vicente-Serrano, S. M. & García-Ruiz, J. M. Influence of the North Atlantic Oscillation on water resources in central Iberia: Precipitation, streamflow anomalies, and reservoir management strategies. Wat. Resour. Res. 43, W09411 (2007)

    Article  ADS  Google Scholar 

  6. Scaife, A. A. et al. Skilful long range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014)

    Article  ADS  Google Scholar 

  7. Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324, 78–80 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Graf, H. F., Kirchner, I., Robock, A. & Schult, I. Pinatubo eruption winter climate effects: model versus observations. Clim. Dyn. 9, 81–93 (1993)

    Article  Google Scholar 

  9. Stenchikov, G. et al. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J. Geophys. Res. D 107, 4803 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Casado, M. et al. Impact of precipitation intermittency on NAO-temperature signals in proxy records. Clim. Past 9, 871–886 (2013)

    Article  Google Scholar 

  11. Schurer, A. P., Tett, S. F. B. & Hegerl, G. C. Small influence of solar variability on climate over the past millennium. Nature Geosci. 7, 104–108 (2014)

    Article  ADS  CAS  Google Scholar 

  12. Lamb, H. H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1, 13–37 (1965)

    Article  Google Scholar 

  13. Olsen, J., Anderson, N. J. & Knudsen, M. F. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geosci. 5, 808–812 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Moreno, A. et al. The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quat. Sci. Rev. 43, 16–32 (2012)

    Article  ADS  Google Scholar 

  15. Gómez-Navarro, J. J. & Zorita, E. Atmospheric annular modes in simulations over the past millennium: no long-term response to external forcing. Geophys. Res. Lett. 40, 3232–3236 (2013)

    Article  ADS  Google Scholar 

  16. Box, J. E. Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol. 22, 1829–1847 (2002)

    Article  Google Scholar 

  17. Jones, P. D., Harpham, C. & Vinther, B. M. Winter-responding proxy temperature reconstructions and the North Atlantic Oscillation. J. Geophys. Res. D 119, 6497–6505 (2014)

    Article  ADS  Google Scholar 

  18. Schmutz, C., Luterbacher, J., Gyalistras, D., Xoplaki, E. & Wanner, H. Can we trust proxy-based NAO index reconstructions? Geophys. Res. Lett. 27, 1135–1138 (2000)

    Article  ADS  Google Scholar 

  19. Raible, C. C., Lehner, F., González-Rouco, J. F. & Fernández-Donado, L. Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Clim. Past 10, 537–550 (2014)

    Article  Google Scholar 

  20. Lehner, F., Raible, C. C. & Stocker, T. F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev. 45, 85–94 (2012)

    Article  ADS  Google Scholar 

  21. Huth, R., Bochnicek, J. & Hejda, P. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation. J. Atmos. Sol. Terr. Phys. 69, 1095–1109 (2007)

    Article  ADS  Google Scholar 

  22. Chen, W. & Zhou, Q. Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle. Adv. Atmos. Sci. 29, 217–226 (2012)

    Article  Google Scholar 

  23. Vinther, B. M., Andersen, K. K., Hansen, A. W., Schmith, T. & Jones, P. D. Improving the Gibraltar/Reykjavik NAO index. Geophys. Res. Lett. 30, 2222 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Cook, E. R., D’Arrigo, R. D. & Mann, M. E. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400. J. Clim. 15, 1754–1764 (2002)

    Article  ADS  Google Scholar 

  25. Smerdon, J. E. Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs. Clim. Change 3, 63–77 (2012)

    Google Scholar 

  26. Crowley, T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Vieira, L. E. A., Solanki, S. K., Krivova, N. A. & Usoskin, I. Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 531, A6 (2011)

    Article  ADS  Google Scholar 

  28. Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013)

    Article  ADS  Google Scholar 

  29. Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Sigl, M. et al. Insights from Antarctica on volcanic forcing during the Common Era. Nature Clim. Change 4, 693–697 (2014)

    Article  ADS  Google Scholar 

  31. Shindell, D. T., Schmidt, G. A., Mann, M. E. & Faluvegi, G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res. D 109, D05104 (2004)

    Article  ADS  Google Scholar 

  32. Jones, P. D. et al. Monthly mean pressure reconstructions for Europe. Int. J. Climatol. 19, 347–364 (1999)

    Article  Google Scholar 

  33. Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 18, 545–561 (2002)

    Article  Google Scholar 

  34. Küttel, M. et al. The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim. Dyn. 34, 1115–1128 (2010)

    Article  Google Scholar 

  35. Glueck, M. F. & Stockton, C. W. Reconstruction of the North Atlantic Oscillation, 1429-1983. Int. J. Climatol. 21, 1453–1465 (2001)

    Article  Google Scholar 

  36. Luterbacher, J. et al. Extending North Atlantic oscillation reconstructions back to 1500. Atmos. Sci. Lett. 2, 114–124 (2001)

    Article  ADS  Google Scholar 

  37. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmed, M. et al. Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346 (2013)

    Article  ADS  CAS  Google Scholar 

  39. Overland, J. E. & Preisendorfer, R. W. A significance test for principal components applied to a cyclone climatology. Mon. Weath. Rev. 110, 1–4 (1982)

    Article  ADS  Google Scholar 

  40. Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014)

    Article  Google Scholar 

  41. Baehr, J., Hirschi, J., Beismann, J. O. & Marotzke, J. Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J. Mar. Res. 62, 283–312 (2004)

    Article  Google Scholar 

  42. González-Rouco, J., Beltrami, H., Zorita, E. & von Storch, H. Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys. Res. Lett. 33, L01703 (2006)

    Article  ADS  Google Scholar 

  43. Hawkins, E., Robson, J., Sutton, R., Smith, D. & Keenlyside, N. Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim. Dyn. 37, 2495–2509 (2011)

    Article  Google Scholar 

  44. Griffies, S. M. & Bryan, K. A predictability study of simulated North Atlantic multidecadal variability. Clim. Dyn. 13, 459–487 (1997)

    Article  Google Scholar 

  45. Collins, M. & Sinha, B. Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett. 30, 1306 (2003)

    Article  ADS  Google Scholar 

  46. Siebert, L., Simkin, T. & Kimberly, P. Volcanoes of the World 3rd edn (Univ. California Press, 2010)

    Google Scholar 

  47. Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 16742–16747 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, H. & Schwager, M. Accumulation rate and stable oxygen isotope ratios of ice core ngt14C93.2 from the North Greenland Traverse. http://dx.doi.org/10.1594/PANGAEA.57158 (2000)

  49. Andersen, K. K. et al. Retrieving a common accumulation record from Greenland ice cores for the past 1800 years. J. Geophys. Res. 111, D15106 (2006)

    Article  ADS  Google Scholar 

  50. Cuffey, K. M. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995)

    Article  ADS  CAS  Google Scholar 

  51. Fisher, D. A., Koerner, R. M. & Reeh, N. Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. Holocene 5, 19–24 (1995)

    Article  ADS  Google Scholar 

  52. Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010)

    Article  ADS  Google Scholar 

  53. Grootes, P. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3 to 105 year time resolution. J. Geophys. Res. 102, 26455–26470 (1997)

    Article  ADS  CAS  Google Scholar 

  54. Wilhelm, B. et al. 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat. Res. 78, 1–12 (2012)

    Article  Google Scholar 

  55. Moore, J. J., Hughen, K. A., Miller, G. H. & Overpeck, J. T. Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. J. Paleolimnol. 25, 503–517 (2001)

    Article  ADS  Google Scholar 

  56. Larsen, D. J., Miller, G. H., Geirsdottir, A. & Thordarson, T. A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland. Quat. Sci. Rev. 30, 2715–2731 (2011)

    Article  ADS  Google Scholar 

  57. Cook, T. L., Bradley, R. S., Stoner, J. S. & Francus, P. Five thousand years of sediment transfer in a high arctic watershed recorded in annually laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut, Canada. J. Paleolimnol. 41, 77–94 (2009)

    Article  ADS  Google Scholar 

  58. McCabe-Glynn, S. et al. Variable North Pacific influence on drought in southwestern North America since AD 854. Nature Geosci. 6, 617–621 (2013)

    Article  ADS  CAS  Google Scholar 

  59. Proctor, C., Baker, A., Barnes, W. & Gilmour, M. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim. Dyn. 16, 815–820 (2000)

    Article  Google Scholar 

  60. Seim, A. et al. Climate sensitivity of a millennium-long pine chronology from Albania. Clim. Res. 51, 217–228 (2012)

    Article  Google Scholar 

  61. Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer temperature variations in the European Alps, A.D. 755-2004. J. Clim. 19, 5606–5623 (2006)

    Article  ADS  Google Scholar 

  62. Stahle, D. W. International Tree-Ring Data Bank AR050. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1996)

    Google Scholar 

  63. Stahle, D. W. & Cleaveland, M. K. International Tree-Ring Data Bank FL001. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (2005)

    Google Scholar 

  64. Briffa, K. R. et al. Trends in recent temperature and radial growth spanning 2000 years across northwest Eurasia. Phil. Trans. R. Soc. 363, 2271–2284 (2008)

    Article  Google Scholar 

  65. Tosh, R. International Tree-Ring Data Bank CA051. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1994)

    Google Scholar 

  66. Bunn, A. G., Graumlich, L. J. & Urban, D. L. Trends in twentieth-century tree growth at high elevations in the Sierra Nevada and White Mountains, USA. Holocene 15, 481–488 (2005)

    Article  ADS  Google Scholar 

  67. Woodhouse, C. A. & Brown, P. M. International Tree-Ring Data Bank CO572. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (2006)

    Google Scholar 

  68. Anchukaitis, K. J. et al. Tree-ring-reconstructed summer temperatures from northwestern North America during the last nine centuries. J. Clim. 26, 3001–3012 (2013)

    Article  ADS  Google Scholar 

  69. Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507 (2012)

    Article  Google Scholar 

  70. Büntgen, U., Frank, D., Neuenschwander, T. & Esper, J. Fading temperature sensitivity of Alpine tree growth at its Mediterranean margin and associated effects on large-scale climate reconstructions. Clim. Change 114, 651–666 (2012)

    Article  ADS  Google Scholar 

  71. Stahle, D. W. International Tree-Ring Data Bank LA001. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1996)

    Google Scholar 

  72. Esper, J. et al. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 34, L17702 (2007)

    Article  ADS  Google Scholar 

  73. Graumlich, L. J., Pisaric, M. F. J., Waggoner, L. A., Littell, J. S. & King, J. C. Upper Yellowstone River flow and teleconnections with Pacific basin climate variability during the past three centuries. Clim. Change 59, 245–262 (2003)

    Article  Google Scholar 

  74. Touchan, R., Woodhouse, C. A., Meko, D. M. & Allen, C. Millennial precipitation reconstruction for the Jemez Mountains, New Mexico, reveals changing drought signal. Int. J. Climatol. 31, 896–906 (2011)

    Article  Google Scholar 

  75. Esper, J. et al. Orbital forcing of tree-ring data. Nature Clim. Change 2, 862–866 (2012)

    Article  ADS  Google Scholar 

  76. Graybill, D. A. International Tree-Ring Data Bank NV516. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1994)

    Google Scholar 

  77. Graybill, D. A. International Tree-Ring Data Bank NV517. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1994)

    Google Scholar 

  78. Salzer, M. & Kipfmueller, K. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. Clim. Change 70, 465–487 (2005)

    Article  ADS  CAS  Google Scholar 

  79. Stahle, D. W. & Cleaveland, M. K. Tree-ring reconstructed rainfall over the southeastern USA during the medieval warm period and the little ice age. Clim. Change 26, 199–212 (1994)

    Article  ADS  Google Scholar 

  80. Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12, 727–736 (2002)

    Article  ADS  Google Scholar 

  81. Buntgen, U. et al. Filling the Eastern European gap in millennium-long temperature reconstructions. Proc. Natl Acad. Sci. USA 110, 1773–1778 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schweingruber, F. H . International Tree-Ring Data Bank SWIT177. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring

  83. Graybill, D. A. International Tree-Ring Data Bank UT508. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1994)

    Google Scholar 

  84. Graybill, D. A. International Tree-Ring Data Bank UT509. https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (1994)

    Google Scholar 

  85. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996)

    Article  ADS  Google Scholar 

  86. Compo, G. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011)

    Article  ADS  Google Scholar 

  87. Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    Article  ADS  Google Scholar 

  88. Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005)

    Article  ADS  Google Scholar 

  89. Zhang, J. & Wu, T. W. The impact of external forcings on climate during the past millennium: Results from transient simulation with BCC_CSM1.1. European Geosciences Union General Assembly abstr. EGU2012-448 (2012)

  90. Landrum, L. et al. Last millennium climate and its variability in CCSM4. J. Clim. 26, 1085–1111 (2012)

    Article  ADS  Google Scholar 

  91. Phipps, S. et al. The CSIRO Mk3L climate system model version 1.0–Part 2: response to external forcings. Geosci. Model Dev. 5, 649–682 (2012)

    Article  ADS  Google Scholar 

  92. Zhou, T., Li, B., Man, W., Zhang, L. & Zhang, J. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin. Sci. Bull. 56, 3028–3041 (2011)

    Article  Google Scholar 

  93. Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014)

    Article  ADS  Google Scholar 

  94. Sueyoshi, T. et al. Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM. Geosci. Model Dev. Discuss. 6, 819–836 (2013)

    Article  ADS  Google Scholar 

  95. Jungclaus, J. H., Lohmann, K. & Zanchettin, D. Enhanced 20th century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim. Past 10, 2895–2924 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work of P.O., D.S., V.M.-D. and M.C. has been financially supported by the French ANR CEPS project Green Greenland (ANR-10-CEPL-0008). F.L. and C.R. acknowledge the support of the NCCR-Climate, funded by the Swiss National Science Foundation (grant number 200020 147174). P.Y. acknowledges funding from the Swedish Research Council (grant number C0629701). We thank the paleoclimate community, in particular the PAGES2k Network, and all the institutions involved in the CMIP5/PMIP3 initiative for making available proxy data and model outputs. We also thank F. González-Rouco and M. Montoya for discussions at an earlier stage of the analysis; M. Khodri for feedback on the volcanic reconstructions; and E. Hawkins for help and advice on the statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

P.O. gathered and prepared the data with the help of M.C., and developed the ensemble reconstruction and part of the statistical analyses. F.L. prepared the pseudo-proxies from reanalyses and models and carried out the perfect-model study. D.S. analysed the impact of external forcings on the NAO. All authors helped in conceiving the study, discussing ideas and writing the paper.

Corresponding author

Correspondence to Pablo Ortega.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Data will be made available at http://www.ncdc.noaa.gov/data-access/paleoclimatology-data.

Extended data figures and tables

Extended Data Figure 1 Verification of the pseudo-reconstructions.

Box-and-whisker plots showing the correlations between the six pseudo-reconstructed NAOmc ensembles and the corresponding true simulated NAOs, in three independent subsets of years (from left to right for each ensemble): the 117 years selected for calibration (specific to each ensemble realization), the remaining 30 years that need to be validated (following the original strategy), and a long validation period from ad 1000–1822 (possible thanks to the perfect-model approach). In this latter case, since the period is the same for all the ensemble realizations, the correlation is also calculated for the ensemble mean (filled coloured dots). Red horizontal lines indicate the first significant correlation coefficient (P < 0.05) of the ensemble.

Extended Data Figure 2 Comparison of three alternative reconstructions.

The figure shows probability density functions (PDFs) for the 50-year moving-window correlations between the simulated NAO and three alternative pseudo-reconstructions in the ensemble of PMIP3 simulations (Extended Data Table 3): a, NAOTrouet; b, NAOmc; c, NAOLehner. Vertical dotted lines represent the median correlation for the ensemble. Each coloured line represents a different pseudo-reconstructed NAO ensemble.

Extended Data Figure 3 NAO–pseudo-proxy relationships.

af, Correlations between the simulated NAO and the associated pseudo-proxies in the PMIP3 runs. Pseudo-proxies are defined from a pure climatic signal (coloured asterisks), and subsequently perturbed with AR(1) noises (thin green lines). For the perturbed pseudo-proxy definitions, ten different realizations of the noise are considered. The correlations between the actual proxies and NAOVinther in the common period ad 1823–1969 are also shown for comparison (thick black crosses).

Extended Data Table 1 Proxy description
Extended Data Table 2 Description of the reanalyses.
Extended Data Table 3 Description of the simulations.
Extended Data Table 4 Principal-component (PC) contributions to the ensemble reconstructions.
Extended Data Table 5 Description of the NAO/sea-level pressure (SLP) records used for validation.
Extended Data Table 6 The 11 largest volcanic eruptions between ad 1049 and ad 1969 in three alternative reconstructions.
Extended Data Table 7 Eleven large volcanic eruptions common to the three alternative reconstructions.

Supplementary information

Supplementary Data

This file contains the main code used to produce the model-constrained NAO ensemble reconstruction. (PDF 88 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, P., Lehner, F., Swingedouw, D. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015). https://doi.org/10.1038/nature14518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing