Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Defining the Anthropocene

Abstract

Time is divided by geologists according to marked shifts in Earth’s state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Here we review the historical genesis of the idea and assess anthropogenic signatures in the geological record against the formal requirements for the recognition of a new epoch. The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964. The formal establishment of an Anthropocene Epoch would mark a fundamental change in the relationship between humans and the Earth system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the current Geologic Time Scale10 (GTS2012), with two alternatives.
Figure 2: Defining the beginning of the Anthropocene.

Similar content being viewed by others

References

  1. Crutzen, P. J. & Stoermer, E. F. The Anthropocene. IGBP Global Change Newsl. 41, 17–18 (2000)This paper suggested that the Holocene has ended and the Anthropocene has begun, starting the contemporary increase in the usage of the term Anthropocene.

    Google Scholar 

  2. Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36, 614–621 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. Lond. A 369, 835–841 (2011)

    Article  ADS  Google Scholar 

  5. Dalby, S. Biopolitics and climate security in the Anthropocene. Geoforum 49, 184–192 (2013)

    Article  Google Scholar 

  6. Anon. The Anthropocene: a man-made world. The Economist May 26 (2011); http://www.economist.com/node/18741749

  7. Zalasiewicz, J. The Earth After Us: What Legacy Will Humans Leave in the Rocks? (Oxford University Press, 2008)

    Google Scholar 

  8. Autin, W. J. & Holbrook, J. M. Is the Anthropocene an issue of stratigraphy or pop culture? GSA Today 22, 60–61 (2012)

    Article  Google Scholar 

  9. Gibbard, P. L. & Walker, M. J. C. The term ‘Anthropocene’ in the context of formal geological classification. Geol. Soc. Lond. Spec. Publ. 395, 29–37 (2014)This paper presents a view that there is not currently enough evidence to formally ratify a new Anthropocene Epoch.

    Article  ADS  Google Scholar 

  10. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier, 2012)This book is the latest GTS, including the formal assessments of Earth’s history divided into epochs, periods, eras and eons.

    Google Scholar 

  11. Finney, S. C. The ‘Anthropocene’ as a ratified unit in the ICS International Chronostratigraphic Chart: fundamental issues that must be addressed by the Task Group. Geol. Soc. Lond. Spec. Publ. 395, 23–28 (2014)This paper details the requirements and questions that will need to be addressed by the initial committee that will recommend whether or not an Anthropocene epoch is to be formally defined.

    Article  ADS  Google Scholar 

  12. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 6, 465–570 (Cambridge Univ. Press, 2013)

  14. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 5, 383–464 (Cambridge Univ. Press, 2013)

  15. Wolff, E. W. Ice Sheets and the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 255–263 (2014)

    Article  ADS  Google Scholar 

  16. InternationalGeosphere-Biosphere Programme, Intergovernmental Oceanographic Commission, Scientific Committee on Oceanic Research. Ocean Acidification Summary for Policymakers – Third Symposium on the Ocean in a High-CO 2 World (International Geosphere-Biosphere Programme, 2013) http://ocean-acidification.net/for-policymakers/

  17. Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Thomas, C. D. The Anthropocene could raise biological diversity. Nature 502, 7 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B 279, 4772–4777 (2012)

    Article  Google Scholar 

  22. Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Carriere, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. Entomol. 107, 496–507 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Davis, R. V. Inventing the present: historical roots of the Anthropocene. Earth Sci. Hist. 30, 63–84 (2011)This paper investigates and reviews the history of the use of the terms ‘Holocene’ and ‘Anthropocene’, showing that the Holocene includes humans in its first nineteenth-century definition.

    Article  Google Scholar 

  27. Rudwick, M. S. J. Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution (University of Chicago Press, 2005)

    Book  Google Scholar 

  28. Jenkyn, T. W. Lessons in Geology XLVI. Chapter IV. On the effects of organic agents on the Earth's crust. Popular Educator 4, 139–141 (1854)

    Google Scholar 

  29. Jenkyn, T. W. Lessons in Geology XLIX. Chapter V. On the classification of rocks section IV. On the tertiaries Popular Educator. 4, 312–316 (1854)

  30. Hansen, P. H. The Summits of Modern Man: Mountaineering after the Enlightenment (Harvard University Press, 2013)

    Book  Google Scholar 

  31. Haughton, S. Manual of Geology (Longman, 1865)

    Google Scholar 

  32. Stoppani, A. Corso di Geologia Vol. II (G. Bernardoni e G. Brigola, 1873)

    Google Scholar 

  33. Dana, J. D. Manual of Geology (Theodore Bliss and Co., 1863)

    Google Scholar 

  34. Le Conte, J. On critical periods in the history of the Earth and their relation to evolution; and on the Quaternary as such a period. Am. J. Sci. 14, 99–114 (1877)

    Article  ADS  Google Scholar 

  35. Lyell, C. Principles of Geology Volumes I, II and III (University of Chicago Press, 1990); originally published by John Murray, 1830–1833

  36. Shantser, E. V. in Great Soviet Encyclopedia Vol. 2 (ed. Prokhorov, A. M. ) 139–144 (Macmillan, 1979)

    Google Scholar 

  37. Vernadsky, W. I. Biosphere and Noosphere. Am. Sci. 33, 1–12 (1945)

    Google Scholar 

  38. Walker, M. et al. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quat. Sci. 24, 3–17 (2009)

    Article  Google Scholar 

  39. Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. Lond. A 369, 842–867 (2011)

    Article  ADS  Google Scholar 

  40. Zalasiewicz, J. et al. Stratigraphy of the Anthropocene. Phil. Trans. R. Soc. Lond. A 369, 1036–1055 (2011)

    Article  ADS  CAS  Google Scholar 

  41. Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. A. & Snelling, A. M. A stratigraphical basis for the Anthropocene? Geol. Soc. Lond. Spec. Publ. 395, 1–21 (2014)This paper reviews various stratigraphic markers relevant to defining the Anthropocene, with an up-to-date collation of the many markers coincident with the Industrial Revolution and the Great Acceleration.

    Article  ADS  Google Scholar 

  42. Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013)

    Article  Google Scholar 

  43. Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013)This paper summarizes the data and arguments that human activity altered CO 2 and CH 4 emissions thousands of years ago, leading to a delayed next glaciation, known as the Early Anthropogenic Hypothesis.

    Article  ADS  CAS  Google Scholar 

  44. Foley, S. F. et al. The Palaeoanthropocene—the beginnings of anthropogenic environmental change. Anthropocene 3, 83–88 (2013)

    Article  Google Scholar 

  45. Balter, M. Archaeologists say the ‘Anthropocene' is here—but it began long ago. Science 340, 261–262 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Fischer-Kowalski, M., Krausmann, F. & Pallua, I. A sociometabolic reading of the Anthropocene: modes of subsistence, population size and human impact on Earth. Anthropocene Rev. 1, 8–33 (2014)This paper takes an alternative view of the Anthropocene, considering human energy sources, and posits two transitions, to an agricultural mode, about 10,000 yr  bp , and to an industrial mode, which begins after 1500.

    Article  Google Scholar 

  47. Zalasiewicz, J., Williams, M. & Waters, C. N. Can an Anthropocene series be defined and recognized? Geol. Soc. Lond. Spec. Publ. 395, 39–53 (2014)

    Article  ADS  Google Scholar 

  48. Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barnosky, A. D. Palaeontological evidence for defining the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 149–165 (2014)

    Article  ADS  Google Scholar 

  50. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Certini, G. & Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 21, 1269–1274 (2011)

    Article  ADS  Google Scholar 

  54. Gale, S. J. & Hoare, P. G. The stratigraphic status of the Anthropocene. Holocene 22, 1491–1494 (2012)

    Article  ADS  Google Scholar 

  55. Tzedakis, P. C., Channell, J. E. T., Hodell, D. A., Kleiven, H. F. & Skinner, L. C. Determining the natural length of the current interglacial. Nature Geosci. 5, 138–141 (2012)

    Article  ADS  CAS  Google Scholar 

  56. Broecker, W. C. & Stocker, T. F. The Holocene CO2 rise: Anthropogenic or natural? Eos 87, 27–29 (2006)

    Article  ADS  Google Scholar 

  57. Stocker, B. D., Strassmann, K. & Joos, F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences 8, 69–88 (2011)

    Article  ADS  CAS  Google Scholar 

  58. Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011)

    Article  ADS  Google Scholar 

  59. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, 46–49 (1995)

    Article  ADS  CAS  Google Scholar 

  60. Sapart, C. J. et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490, 85–88 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S. & Beerling, D. J. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470, 82–85 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Diamond, J. Guns, Germs and Steel: A Short History of Everybody for the Last 13,000 Years (Chatto and Windus, 1997)

    Google Scholar 

  63. Mann, C. C. 1493: How the Ecological Collision of Europe and the Americas Gave Rise to the Modern World (Granta, 2011)

    Google Scholar 

  64. Crosby, A. W. The Columbian Exchange: Biological and Cultural Consequences of 1492 30 yr edn (Preager, 2003)

    Google Scholar 

  65. Mercuri, A. M. et al. A marine/terrestrial integration for mid-late Holocene vegetation history and the development of the cultural landscape in the Po valley as a result of human impact and climate change. Vegetat. Hist. Archaeobot. 21, 353–372 (2012)

    Article  Google Scholar 

  66. Piperno, D. R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat. Int. 193, 146–159 (2009)

    Article  Google Scholar 

  67. Zalasiewicz, J. & Williams, M. The Anthropocene: a comparison with the Ordovician-Silurian boundary. Rendiconti Lincei-Scienze Fisiche E Naturali 25, 5–12 (2014)

    Article  Google Scholar 

  68. Denevan, W. M. The Native Population of the Americas in 1492 2nd edn (University of Wisconsin Press, 1992)

    Google Scholar 

  69. Mann, C. C. 1491: New Revelations of the Americas Before Columbus (Vintage, 2005)

    Google Scholar 

  70. Nevle, R. J. & Bird, D. K. Effects of syn-pandemic fire reduction and reforestation in the tropical Americas on atmospheric CO2 during European conquest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 25–38 (2008)This paper presents a synthesis of data computing the impacts of the rapid 1492–1650 reduction in population across the Americas and the carbon uptake implications.

    Article  Google Scholar 

  71. Dull, R. A. et al. The Columbian encounter and the Little Ice Age: abrupt land use change, fire, and greenhouse forcing. Ann. Assoc. Am. Geogr. 100, 755–771 (2010)

    Article  Google Scholar 

  72. Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. Neotropical human-landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011)

    Article  ADS  Google Scholar 

  73. Ahn, J. et al. Atmospheric CO2 over the last 1000 years: a high-resolution record from the West Antarctic Ice Sheet (WAIS) divide ice core. Glob. Biogeochem. Cycles 26, GB2027 (2012)

    Article  ADS  CAS  Google Scholar 

  74. Rubino, M. et al. A revised 1000 year atmospheric delta C-13-CO2 record from Law Dome and South Pole, Antarctica. J. Geophys. Res. D 118, 8482–8499 (2013)

    ADS  CAS  Google Scholar 

  75. MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 (2006)

    Article  ADS  CAS  Google Scholar 

  76. Etheridge, D. M., Steele, L. P., Francey, R. J. & Langenfelds, R. L. Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. D 103, 15979–15993 (1998)

    Article  ADS  CAS  Google Scholar 

  77. Smith, V. C. Volcanic markers for dating the onset of the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 283–299 (2014)

    Article  ADS  Google Scholar 

  78. de Silva, S. L. & Zielinski, G. A. Global influence of the AD1600 eruption of Huaynaputina, Peru. Nature 393, 455–458 (1998)

    Article  ADS  CAS  Google Scholar 

  79. Thompson, L. G. et al. Annually resolved ice core records of tropical climate variability over the past 1800 Years. Science 340, 945–950 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Power, M. J. et al. Climatic control of the biomass-burning decline in the Americas after AD 1500. Holocene 23, 3–13 (2013)

    Article  ADS  Google Scholar 

  81. Wang, Z., Chappellaz, J., Park, K. & Mak, J. E. Large variations in Southern Hemisphere biomass burning during the last 650 years. Science 330, 1663–1666 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Ferretti, D. F. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Glob. Biogeochem. Cycles 23, GB4024 (2009)

    Article  ADS  CAS  Google Scholar 

  84. Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000–1800 CE. J. Geophys. Res. 116, G02007 (2011)

    Article  ADS  Google Scholar 

  85. Bush, M. B. & Colinvaux, P. A. Tropical forest disturbance: Paleoecological records from Darien, Panama. Ecology 75, 1761–1768 (1994)

    Article  Google Scholar 

  86. Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change 4, 362–367 (2014)This paper synthesizes paleoclimate records from the southern and northern hemispheres, showing one globally synchronous cool period (1594–1677) and one globally synchronous warm period (1965 onwards) within the last 1,000 years.

    Article  ADS  Google Scholar 

  88. Pomeranz, K. The Great Divergence: China, Europe, and the Making of the Modern World Economy (Princeton University Press, 2000)

    Google Scholar 

  89. Wallerstein, I. The Modern World-System I: Capitalist Agriculture and the Origins of the European World-Economy in the Sixteenth Century (Academic Press, 1974)

    Google Scholar 

  90. Killick, D. & Fenn, T. Archaeometallurgy: the study of preindustrial mining and metallurgy. Annu. Rev. Anthropol. 41, 559–575 (2012)

    Article  Google Scholar 

  91. Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. Proc. Natl Acad. Sci. USA 106, 8830–8834 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hong, S. M., Candelone, J. P., Patterson, C. C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996)

    Article  ADS  CAS  Google Scholar 

  93. Rose, N. L. & Appleby, P. G. Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom. J. Paleolimnol. 34, 349–361 (2005)

    Article  ADS  Google Scholar 

  94. Snowball, I., Hounslow, M. W. & Nilsson, A. Geomagnetic and mineral magnetic characterization of the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 119–141 (2014)

    Article  ADS  Google Scholar 

  95. Wolfe, A. P. et al. Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth Sci. Rev. 116, 17–34 (2013)

    Article  ADS  CAS  Google Scholar 

  96. Holtgrieve, G. W. et al. A coherent signature of Anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334, 1545–1548 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Gałuszka, A., Migaszewski, Z. M. & Zalasiewicz, J. Assessing the Anthropocene with geochemical methods. Geol. Soc. Lond. Spec. Publ. 395, 221–238 (2014)

    Article  ADS  Google Scholar 

  98. Falkowski, P. et al. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Fairchild, I. J. & Frisia, S. Definition of the Anthropocene: a view from the underworld. Geol. Soc. Lond. Spec. Publ. 395, 239–254 (2014)

    Article  ADS  Google Scholar 

  100. Hua, Q. Radiocarbon: a chronological tool for the recent past. Quat. Geochronol. 4, 378–390 (2009)

    Article  Google Scholar 

  101. Harnisch, J. & Eisenhauer, A. Natural CF4 and SF6 on Earth. Geophys. Res. Lett. 25, 2401–2404 (1998)

    Article  ADS  CAS  Google Scholar 

  102. Butler, J. H. et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755 (1999)

    Article  ADS  CAS  Google Scholar 

  103. Rakowski, A. Z. et al. Radiocarbon method in environmental monitoring of CO2 emission. Nucl. Instrum. Methods Phys. Res. B 294, 503–507 (2013)

    Article  ADS  CAS  Google Scholar 

  104. Ketterer, M. E. et al. Resolving global versus local/regional Pu sources in the environment using sector ICP-MS. J. Anal. At. Spectrom. 19, 241–245 (2004)

    Article  CAS  Google Scholar 

  105. Fehn, U. et al. Determination of natural and anthropogenic I-129 in marine sediments. Geophys. Res. Lett. 13, 137–139 (1986)

    Article  ADS  CAS  Google Scholar 

  106. Hansen, V., Roos, P., Aldahan, A., Hou, X. & Possnert, G. Partition of iodine (I-129 and I-127) isotopes in soils and marine sediments. J. Environ. Radioact. 102, 1096–1104 (2011)

    Article  CAS  PubMed  Google Scholar 

  107. Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013)

    Article  ADS  Google Scholar 

  108. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev http://dx.doi.org/10.1177/2053019614564785 (in the press)

  109. Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int http://dx.doi.org/10.1016/j.quaint.2014.11.045 (in the press)

  110. van der Pluijm, B. Hello Anthropocene, goodbye Holocene. Earth's Future 2, 2014EF000268 (2014)

    Article  Google Scholar 

  111. Wright, R. A Short History of Progress (House of Anansi Press, 2004)

    Google Scholar 

  112. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Monnin, E, et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013)

    Article  Google Scholar 

  115. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Alexander, L. V, et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 3–28 (Cambridge Univ. Press, 2013)

  117. Indermuhle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999)

    Article  ADS  CAS  Google Scholar 

  118. Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57, 51–57 (2005)

    Article  ADS  Google Scholar 

  119. Ahn, J. et al. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core. J. Glaciol. 54, 685–695 (2008)

    Article  ADS  CAS  Google Scholar 

  120. Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013)

    Article  Google Scholar 

  121. Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013)

    Article  Google Scholar 

  122. Pongratz, J., Caldeira, K., Reick, C. H. & Claussen, M. Coupled climate-carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between ad 800 and 1850. Holocene 21, 843–851 (2011)

    Article  ADS  Google Scholar 

  123. Orihuela-Belmonte, D. E. et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013)

    Article  Google Scholar 

  124. Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51, 170–193 (1999)

    Article  ADS  Google Scholar 

  125. Trudinger, C. M., Enting, I. G., Francey, R. J., Etheridge, D. M. & Rayner, P. J. Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus B 51, 233–248 (1999)

    Article  ADS  Google Scholar 

  126. Böhm, F. et al. Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem. Geophys. Geosyst. 3, 1–13 (2002)

    Article  Google Scholar 

  127. Trudinger, C. M., Enting, I. G., Rayner, P. J. & Francey, R. J. Kalman filter analysis of ice core data—2. Double deconvolution of CO2 and δ13C measurements. J. Geophys. Res. D 107, D20 (2002)

    Google Scholar 

Download references

Acknowledgements

We acknowledge C. Hamilton, whose idea that humans are a reflexive power rather than force of nature was presented at the ‘Thinking the Anthropocene’ conference in Paris on 15 November 2013, and used with permission. We thank J. Kaplan and K. Krumhardt for the estimates of the population of the Americas, M. Irving for assistance with the figures, and C. Brierley, M.-E. Carr, W. Laurance, A. Mackay, O. Morton, R. Newman and C. Tzedakis for constructive discussion and remarks, and reviewer P. Gibbard for important comments. This work was funded by the European Research Council (T-FORCES, S.L.L.), a Philip Leverhulme Prize award (S.L.L.), and a Royal Society Wolfson Research Merit Award (M.A.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.L. and M.A.M. conceived the paper structure. S.L.L. conceived and developed the Obris hypothesis. S.L.L. wrote the geological importance, historical, farming and Orbis evidence reviews. M.A.M. wrote the Pleistocene, and industrialization and Great Acceleration evidence reviews. M.A.M. conceived and developed the figures. The final two sections, written by S.L.L., emerged from discussions between S.L.L. and M.A.M.

Corresponding author

Correspondence to Simon L. Lewis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, S., Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015). https://doi.org/10.1038/nature14258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14258

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing