Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coastal flooding by tropical cyclones and sea-level rise

Abstract

The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global tropical cyclone activity for the period 1981–2010.
Figure 2: Global sea-level trends.
Figure 3: Coastlines with broad low-lying elevations and shallow abutting bathymetry.
Figure 4: Mean global sea level along with patterns and extent of preserved sedimentary records of tropical cyclone activity following the most recent glacial maximum.

References

  1. Peduzzi, P. et al. Global trends in tropical cyclone risk. Nature Clim. Change 2, 289–294 (2012).

    ADS  Google Scholar 

  2. Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010). This article provides the most current community consensus on projections of future tropical cyclone activity.

    ADS  CAS  Google Scholar 

  3. EM-DAT. The OFDA/CRED International Disaster Database. http://www.emdat.be (CRED, 2013).

  4. Pielke, R. A. et al. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 9, 29–42 (2008).

    Google Scholar 

  5. Mendelsohn, R., Emanuel, K., Chonabayashi, S. & Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nature Clim. Change 2, 205–209 (2012).

    ADS  Google Scholar 

  6. Frank, W. M. & Young, G. S. The interannual variability of tropical cyclones. Mon. Weath. Rev. 135, 3587–3598 (2007).

    ADS  Google Scholar 

  7. Weinkle, J., Maue, R. & Pielke, R. Jr. Historical global tropical cyclone landfalls. J. Clim. 25, 4729–4735 (2012).

    ADS  Google Scholar 

  8. Gray, W. M. in Meteorology Over the Tropical Oceans (ed. Shaw, D. B.) 155–218 (Royal Meteorological Society, 1979).

    Google Scholar 

  9. Emanuel, K. A. The maximum intensity of hurricanes. J. Atmos. Sci. 45, 1143–1155 (1988). This article presents a theoretical foundation for the direct relationship between SST and the intensity of tropical cyclones.

    ADS  Google Scholar 

  10. Camargo, S. J., Emanuel, K. A. & Sobel, A. H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 20, 4819–4834 (2007).

    ADS  Google Scholar 

  11. Tippett, M. K., Camargo, S. J. & Sobel, A. H. A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Clim. 24, 2335–2357 (2011).

    ADS  Google Scholar 

  12. Gray, W. M. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation influences. Mon. Weath. Rev. 112, 1649–1668 (1984).

    ADS  Google Scholar 

  13. Frank, W. M. & Ritchie, E. A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Weath. Rev. 129, 2249–2269 (2001).

    ADS  Google Scholar 

  14. Villarini, G. & Vecchi, G. A. Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Clim. Change 2, 604–607 (2012).

    ADS  CAS  Google Scholar 

  15. Villarini, G. & Vecchi, G. A. Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Clim. 26, 3231–3240 (2013).

    ADS  Google Scholar 

  16. Kim, J.-H., Ho, C.-H., Kim, H.-S., Sui, C.-H. & Park, S. K. Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Clim. 21, 1171–1191 (2008).

    ADS  Google Scholar 

  17. Barrett, B. S. & Leslie, L. M. Links between tropical cyclone activity and Madden–Julian Oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Weath. Rev. 137, 727–744 (2009).

    ADS  Google Scholar 

  18. Stevenson, S. Significant changes to ENSO strength and impacts in the twenty-first century: results from CMIP5. Geophys. Res. Lett. 39, L17703 (2012).

    ADS  Google Scholar 

  19. Takahashi, C., Sato, N., Seiki, A., Yoneyama, K. & Shirooka, R. Projected future change of MJO and its extratropical teleconnection in east Asia during the northern winter simulated in IPCC AR4 models. SOLA 7, 201–204 (2011).

    ADS  Google Scholar 

  20. Camargo, S. J., Sobel, A. H., Barnston, A. G. & Klotzbach, P. J. in Global Perspectives on Tropical Cyclones: From Science to Mitigation, Vol. 4 (eds Chan, J. C. L. & Kepert, J. D.) (World Scientific Publishing Company, 2010).

    Google Scholar 

  21. Jones, S. C. et al. The extratropical transition of tropical cyclones: forecast challenges, current understanding, and future directions. Weather Forecast. 18, 1052–1092 (2003).

    ADS  Google Scholar 

  22. Kossin, J. P. & Camargo, S. J. Hurricane track variability and secular potential intensity trends. Clim. Change 97, 329–337 (2009).

    ADS  Google Scholar 

  23. Parris, A. et al. Global Sea Level Rise Scenarios for the US National Climate Assessment. NOAA Tech Memo OAR CPO-1 (NOAA, 2012).

    Google Scholar 

  24. Woodworth, P. & Player, R. The permanent service for mean sea level: an update to the 21st century. J. Coast. Res. 19, 287–295 (2003).

    Google Scholar 

  25. Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).

    ADS  Google Scholar 

  26. Zhang, K., Douglas, B. C. & Leatherman, S. P. Twentieth-century storm activity along the US east coast. J. Clim. 13, 1748–1761 (2000).

    ADS  Google Scholar 

  27. Irish, J. L., Resio, D. T. & Divoky, D. Statistical properties of hurricane surge along a coast. J. Geophys. Res. 116, C10007 (2011).

    ADS  Google Scholar 

  28. Resio, D. T. & Westerink, J. J. Modeling the physics of storm surges. Phys. Today 61, 33 (2008).

    Google Scholar 

  29. Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010). This article outlines future challenges for world regions most vulnerable to future sea-level rise and subsidence.

    ADS  CAS  PubMed  Google Scholar 

  30. Han, M., Hou, J. & Wu, L. Potential impacts of sea-level rise on China's coastal environment and cities: a national assessment. J. Coast. Res. 14, 79–95 (1995).

    Google Scholar 

  31. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004).

    ADS  Google Scholar 

  32. Knutson, T. R. & Tuleya, R. E. In: Climate Extremes and Society (eds Diaz, H. F. & Murnane, R. J.) 120–144 (2008).

    Google Scholar 

  33. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    ADS  CAS  PubMed  Google Scholar 

  34. Nicholls, R. J., Hoozemans, F. M. J. & Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob. Environ. Change 9, S69–S87 (1999).

    Google Scholar 

  35. Hanson, S. et al. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104, 89–111 (2011).

    ADS  Google Scholar 

  36. Ali, A. Climate change impacts and adaptation assessment in Bangladesh. Clim. Res. 12, 109–116 (1999).

    Google Scholar 

  37. Church, J. A., Hunter, J. R., McInnes, K. L. & White, N. J. Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Meteorol. Mag. 55, 253–260 (2006).

    Google Scholar 

  38. Irish, J. L. & Resio, D. T. A method for estimating future hurricane flood probabilities and associated uncertainty. J. Waterw. Port Coast. Ocean Eng. 139, 126–134 (2013).

    Google Scholar 

  39. Lin, N., Emanuel, K., Oppenheimer, M. & Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nature Clim. Change 2, 462–467 (2012). This study provides a rigorous evaluation for the combined influence of SLR and future tropical cyclone climate on storm surge probabilities.

    ADS  Google Scholar 

  40. Smith, J. M., Cialone, M. A., Wamsley, T. V. & McAlpin, T. O. Potential impact of sea level rise on coastal surges in southeast Louisiana. Ocean Eng. 37, 37–47 (2010). This is one of a number of important studies that quantify the nonlinear effects on surge by SLR.

    Google Scholar 

  41. Rodolfo, K. S. & Siringan, F. P. Global sea-level rise is recognized, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 30, 118–139 (2006).

    PubMed  Google Scholar 

  42. Nicholls, R. J. Coastal megacities and climate change. GeoJournal 37, 369–379 (1995).

    Google Scholar 

  43. Wang, J., Gao, W., Xu, S. & Yu, L. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Change 115, 537–558 (2012).

    ADS  Google Scholar 

  44. Neumann, J. E., Emanuel, K. A., Ravela, S., Ludwig, L. C. & Verly, C. WP 2012/81 Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam (UNU–WIDER, 2012).

    Google Scholar 

  45. Hoffman, R. N. et al. An estimate of increases in storm surge risk to property from sea level rise in the first half of the twenty-first century. Weather Clim. Soc. 2, 271–293 (2010).

    Google Scholar 

  46. Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K. & Purcell, A. P. Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res. 111, C09025 (2006).

    ADS  Google Scholar 

  47. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    ADS  CAS  PubMed  Google Scholar 

  48. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS  CAS  PubMed  Google Scholar 

  49. FitzGerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36, 601–647 (2008). This paper reviews a century of research on shoreline change in response to changes in sea level.

    ADS  CAS  Google Scholar 

  50. Goodbred, S. L. Jr, Wright, E. E. & Hine, A. C. Sea-level change and storm-surge deposition in a late Holocene Florida salt marsh. J. Sediment. Res. 68, 240–252 (1998).

    ADS  Google Scholar 

  51. Friedrichs, C. T. & Perry, J. E. Tidal salt marsh morphodynamics: a synthesis. J. Coast. Res. 27, 7–37 (2001).

    Google Scholar 

  52. Stumpf, R. P. The process of sedimentation on the surface of a salt marsh. Estuar. Coast. Shelf Sci. 17, 495–508 (1983).

    ADS  Google Scholar 

  53. Cooper, M. J. P., Beevers, M. D. & Oppenheimer, M. The potential impacts of sea level rise on the coastal region of New Jersey, USA. Clim. Change 90, 475–492 (2008).

    ADS  Google Scholar 

  54. Larcombe, P. & Carter, R. Cyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: a review. Quat. Sci. Rev. 23, 107–135 (2004).

    ADS  Google Scholar 

  55. Nott, J. Tropical cyclones and the evolution of the sedimentary coast of northern Australia. J. Coast. Res. 22, 49–62 (2006).

    ADS  Google Scholar 

  56. Cooper, J. A. G. & Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global Planet. Change 43, 157–171 (2004).

    ADS  Google Scholar 

  57. Morton, R. A., Paine, J. G. & Gibeaut, J. C. Stages and durations of post-storm beach recovery, southeastern Texas coast, USA. J. Coast. Res. 10, 884–908 (1994).

    Google Scholar 

  58. Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nature Clim. Change 3, 83–87 (2012).

    ADS  Google Scholar 

  59. Morton, R. A. & Sallenger, A. H. Jr. Morphological impacts of extreme storms on sandy beaches and barriers. J. Coast. Res. 19, 560–573 (2003).

    Google Scholar 

  60. Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A. & Grzegorzewski, A. S. Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Nat. Hazards 51, 207–224 (2009).

    Google Scholar 

  61. Fagherazzi, S., Carniello, L., D'Alpaos, L. & Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl Acad. Sci. USA 103, 8337–8341 (2006).

    ADS  CAS  PubMed  Google Scholar 

  62. Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).

    ADS  CAS  PubMed  Google Scholar 

  63. Zhang, K., Douglas, B. & Leatherman, S. Do storms cause long-term beach erosion along the US East Barrier Coast? J. Geol. 110, 493–502 (2002). This article presents evidence for the dominance of sea-level rise and variations of sediment supply in driving long-term rates of shore-line retreat.

    ADS  Google Scholar 

  64. Harmelin-Vivien, M. L. The effects of storms and cyclones on coral reefs: a review. J. Coast. Res. 12, 211–231 (1994).

    Google Scholar 

  65. Wang, P. et al. Morphological and sedimentological impacts of Hurricane Ivan and immediate poststorm beach recovery along the northwestern Florida barrier-island coasts. J. Coast. Res. 22, 1382–1402 (2006).

    ADS  Google Scholar 

  66. Done, T. J. Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. Am. Zool. 39, 66–79 (1999).

    Google Scholar 

  67. Donoghue, J. F. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Clim. Change 107, 17–33 (2011).

    ADS  Google Scholar 

  68. Emery, K., Wigley, R. & Rubin, M. A submerged peat deposit off the Atlantic coast of the United States. Limnol. Oceanogr. 10, R97–R102 (1965).

    ADS  Google Scholar 

  69. Field, M. E., Meisburger, E. P., Stanley, E. A. & Williams, S. J. Upper Quaternary peat deposits on the Atlantic inner shelf of the United States. Geol. Soc. Am. Bull. 90, 618–628 (1979).

    ADS  Google Scholar 

  70. Pluet, J. & Pirazzoli, P. World Atlas of Holocene Sea-Level Changes Vol. 58 (Elsevier, 1991).

    Google Scholar 

  71. Stanley, D. J. & Warne, A. G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265, 228–231 (1994).

    ADS  CAS  PubMed  Google Scholar 

  72. Kraft, J. C. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geol. Soc. Am. Bull. 82, 2131–2158 (1971). This article provides evidence for the landward transgression and reworking of the continental shelf by rapid rates of sea-level rise during the early Holocene.

    ADS  Google Scholar 

  73. Anderson, J., Milliken, K., Wallace, D., Rodriguez, A. & Simms, A. Coastal impact underestimated from rapid sea-level rise. Eos 91, 205–206 (2010).

    ADS  Google Scholar 

  74. Rhodes, E. Depositional model for a chenier plain, Gulf of Carpentaria, Australia. Sedimentology 29, 201–221 (1982).

    ADS  Google Scholar 

  75. Otvos, E. G. Coastal barriers, Gulf of Mexico: Holocene evolution and chronology. J. Coast. Res. 42, 141–163 (2005).

    Google Scholar 

  76. Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).

    Google Scholar 

  77. Newman, W. S. & Rusnak, G. A. Holocene submergence of the eastern shore of Virginia. Science 148, 1464–1466 (1965).

    ADS  CAS  PubMed  Google Scholar 

  78. Ellison, J. C. & Stoddart, D. R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J. Coast. Res. 7, 151–165 (1991).

    Google Scholar 

  79. Parkinson, R. W., DeLaune, R. D. & White, J. R. Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. J. Coast. Res. 10, 1077–1086 (1994).

    Google Scholar 

  80. Mann, M., Woodruff, J., Donnelly, J. & Zhang, Z. Atlantic hurricanes and climate over the past 1,500 years. Nature 460, 880–883 (2009).

    ADS  CAS  PubMed  Google Scholar 

  81. Woodruff, J. D., Donnelly, J. P., Emanuel, K. & Lane, P. Assessing sedimentary records of paleohurricane activity using modeled hurricane climatology. Geochem. Geophys. Geosyst. 9, Q09V10 (2008).

    Google Scholar 

  82. Nott, J. & Forsyth, A. Punctuated global tropical cyclone activity over the past 5,000 years. Geophys. Res. Lett. 39, L14703 (2012).

    ADS  Google Scholar 

  83. Lewis, S. E., Sloss, C. R., Murray-Wallace, C. V., Woodroffe, C. D. & Smithers, S. G. Post-glacial sea-level changes around the Australian margin: a review. Quat. Sci. Rev. 74, 115–138 (2013).

    ADS  Google Scholar 

  84. Dasgupta, S., Laplante, B., Murray, S. & Wheeler, D. Exposure of developing countries to sea-level rise and storm surges. Clim. Change 106, 567–579 (2011).

    ADS  CAS  Google Scholar 

  85. Webster, P. J. Meteorology: Improve weather forecasts for the developing world. Nature 493, 17–19 (2013).

    ADS  PubMed  Google Scholar 

  86. Brecht, H., Dasgupta, S., Laplante, B., Murray, S. & Wheeler, D. Sea-level rise and storm surges: High stakes for a small number of developing countries. J. Environ. Dev. 21, 120–138 (2012).

    Google Scholar 

  87. Jarvinen, B. R., Neuman, C. & Davis, M. NOAA Tech. Memo. NWS NHC-22, A Tropical Cyclone Data Tape for the North Atlantic basin (NOAA, 1988).

    Google Scholar 

  88. Chu, J.-H., Sampson, C. R., Levine, A. S. & Fukada, E. The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945–2000 (Naval Research Laboratory, 2002).

    Google Scholar 

  89. McTaggart-Cowan, R. et al. Analysis of hurricane Catarina (2004). Mon. Weath. Rev. 134, 3029–3053 (2006).

    ADS  Google Scholar 

  90. Permanent Service for Mean Sea Level. Obtaining Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (PSMSL, 2013).

  91. United Nations. World Urbanization Prospects, The 2011 Revision. http://esa.un.org/unup/ (United Nations, 2012).

  92. Karim, M. F. & Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Change 18, 490–500 (2008).

    Google Scholar 

  93. Huang, Z., Zong, Y. & Zhang, W. Coastal inundation due to sea level rise in the Pearl River Delta, China. Nat. Hazards 33, 247–264 (2004).

    Google Scholar 

  94. NOAA. Sea Level Trends. http://tidesandcurrents.noaa.gov/sltrends/ (NOAA, 2013).

  95. Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (DOC/NOAA/NESDIS/NGDC, 2008).

    Google Scholar 

  96. Fleming, K. et al. Refining the eustatic sea-level curve since the Last Glacial Maximum using far-and intermediate-field sites. Earth Planet. Sci. Lett. 163, 327–342 (1998).

    ADS  CAS  Google Scholar 

  97. Milne, G. A., Long, A. J. & Bassett, S. E. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat. Sci. Rev. 24, 1183–1202 (2005).

    ADS  Google Scholar 

  98. Peltier, W. R. On eustatic sea level history: last glacial maximum to Holocene. Quat. Sci. Rev. 21, 377–396 (2002).

    ADS  Google Scholar 

  99. Pugh, D. Changing Sea Levels: Effects of Tides, Weather and Climate (Cambridge Univ. Press, 2004).

    Google Scholar 

  100. Scileppi, E. & Donnelly, J. P. Sedimentary evidence of hurricane strikes in western Long Island, New York. Geochem. Geophys. Geosyst. 8, Q06011 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank our colleagues for the many comments and suggestions that improved this manuscript, as well as thoughtful discussions at the 2013 Joint AGU/GSA Conference on 'Coastal Processes and Environments Under Sea-Level Rise and Changing Climate: Science to Inform Management'. J.D.W. is funded through the US National Science Foundation (NSF, grant number EAR-1158780 and EAR-1148244), the Risk Prediction Initiative at the Bermuda Institute of Ocean Sciences (grant number RPI11-1-001/11-5110), and the Hudson River Foundation. S.J.C. acknowledges funding from the National Oceanic and Atmospheric Administration (NOAA, grant number NA11OAR4310093 and NA10OAR4310124) and NSF (grant number AGS-1143959 and AGS-1064081). J.L.I. received funding for this work through NOAA's National Sea Grant College Program (grant number 24036078) and the South Atlantic Landscape Conservation Cooperative (grant number 24036078). The views expressed herein do not necessarily reflect the views of any of these organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Woodruff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, J., Irish, J. & Camargo, S. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013). https://doi.org/10.1038/nature12855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12855

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing