Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vinylogous chain branching catalysed by a dedicated polyketide synthase module

Abstract

Bacteria use modular polyketide synthases (PKSs) to assemble complex polyketides, many of which are leads for the development of clinical drugs, in particular anti-infectives and anti-tumoral agents1. Because these multifarious compounds are notoriously difficult to synthesize, they are usually produced by microbial fermentation. During the past two decades, an impressive body of knowledge on modular PKSs2,3 has been gathered that not only provides detailed insight into the biosynthetic pathways but also allows the rational engineering of enzymatic processing lines to yield structural analogues4,5. Notably, a hallmark of all PKS modules studied so far is the head-to-tail fusion of acyl and malonyl building blocks, which leads to linear backbones. Yet, structural diversity is limited by this uniform assembly mode. Here we demonstrate a new type of PKS module from the endofungal bacterium Burkholderia rhizoxinica that catalyses a Michael-type acetyl addition to generate a branch in the carbon chain. In vitro reconstitution of the entire PKS module, X-ray structures of a ketosynthase-branching didomain and mutagenesis experiments revealed a crucial role of the ketosynthase domain in branching the carbon chain. We present a trapped intermediary state in which acyl carrier protein and ketosynthase are covalently linked by the branched polyketide and suggest a new mechanism for chain alkylation, which is functionally distinct from terpenoid-like β-branching. For the rice seedling blight toxin rhizoxin, one of the strongest known anti-mitotic agents, the non-canonical polyketide modification is indispensable for phytotoxic and anti-tumoral activities. We propose that the formation of related pharmacophoric groups follows the same general scheme and infer a unifying vinylogous branching reaction for PKS modules with a ketosynthase-branching–acyl-carrier-protein architecture. This study unveils the structure and function of a new PKS module that broadens the biosynthetic scope of polyketide biosynthesis and sets the stage for rationally creating structural diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of rhizoxin biosynthesis and chain branching mechanisms.
Figure 2: In vitro reconstitution of the chain branching reaction.
Figure 3: Domain structures of branching module (RhiE*).
Figure 4: Model of enzyme mechanism for Michael addition and lactone formation based on NMR and SDS–PAGE analyses.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The coordinates and structure factor amplitudes for RhiE* were deposited in the PDB database under accession code 4KC5.

References

  1. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Khosla, C., Kapur, S. & Cane, D. E. Revisiting the modularity of modular polyketide synthases. Curr. Opin. Chem. Biol. 13, 135–143 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keatinge-Clay, A. T. The structures of type I polyketide synthases. Nat. Prod. Rep. 29, 1050–1073 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Weissman, K. J. & Leadlay, P. F. Combinatorial biosynthesis of reduced polyketides. Nature Rev. Microbiol. 3, 925–936 (2005)

    Article  CAS  Google Scholar 

  5. Wong, F. T. & Khosla, C. Combinatorial biosynthesis of polyketides–a perspective. Curr. Opin. Chem. Biol. 16, 117–123 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Khosla, C. Structures and mechanisms of polyketide synthases. J. Org. Chem. 74, 6416–6420 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, M. C. & Moore, B. S. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat. Prod. Rep. 29, 72–86 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Calderone, C. T. Isoprenoid-like alkylations in polyketide biosynthesis. Nat. Prod. Rep. 25, 845–853 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Scherlach, K., Busch, B., Lackner, G., Paszkowski, U. & Hertweck, C. Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew. Chem. Int. Ed. Engl. 51, 9615–9618 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Scherlach, K., Partida-Martinez, L. P., Dahse, H.-M. & Hertweck, C. Antimitotic rhizoxin derivatives from cultured symbionts of the rice pathogenic fungus Rhizopus microsporus. J. Am. Chem. Soc. 128, 11529–11536 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Hong, J. & White, J. D. The chemistry and biology of rhizoxins, novel antitumor macrolides from Rhizopus chinensis. Tetrahedron 60, 5653–5681 (2004)

    Article  CAS  Google Scholar 

  14. Schmitt, I. et al. Evolution of host-resistance in a toxin-producing fungal-bacterial mutualism. ISME J. 2, 632–641 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Kusebauch, B., Scherlach, K., Kirchner, H., Dahse, H. M. & Hertweck, C. Antiproliferative effects of ester- and amide-functionalized rhizoxin derivatives. ChemMedChem 6, 1998–2001 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Lackner, G., Moebius, N., Partida-Martinez, L. P. & Hertweck, C. Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus. J. Bacteriol. 193, 783–784 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Lackner, G., Moebius, N., Partida-Martinez, L. P., Boland, S. & Hertweck, C. Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics 12, 210 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Partida-Martinez, L. P. & Hertweck, C. A gene cluster encoding rhizoxin biosynthesis in Burkholderia rhizoxina, the bacterial endosymbiont of the fungus Rhizopus microsporus. ChemBioChem 8, 41–45 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Kusebauch, B., Busch, B., Scherlach, K., Roth, M. & Hertweck, C. Polyketide-chain branching by an enzymatic Michael addition. Angew. Chem. Int. Ed. Engl. 48, 5001–5004 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Dorrestein, P. C. et al. Facile detection of acyl and peptidyl intermediates on thiotemplate carrier domains via phosphopantetheinyl elimination reactions during tandem mass spectrometry. Biochemistry 45, 12756–12766 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Tsai, S.-C. & Ames, B. D. Structural enzymology of polyketide synthases. Methods Enzymol. 459, 17–47 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Crawford, J. M. et al. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461, 1139–1143 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  24. Bretschneider, T. et al. A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nature Chem. Biol. 8, 154–161 (2011)

    Article  Google Scholar 

  25. Fuchs, S. W. et al. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase. Angew. Chem. Int. Ed. Engl. 52, 4108–4112 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010)

    CAS  PubMed  Google Scholar 

  27. Lim, S. K. et al. iso-Migrastatin, migrastatin, and dorrigocin production in Streptomyces platensis NRRL 18993 is governed by a single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. J. Biol. Chem. 284, 29746–29756 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, B. et al. Biosynthesis of 9-methylstreptimidone involves a new decarboxylative step for polyketide terminal diene formation. Org. Lett. 15, 1278–1281 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. Rajski, S. R. & Shen, B. Multifaceted modes of action for the glutarimide-containing polyketides revealed. ChemBioChem 11, 1951–1954 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jez, J. M., Ferrer, J. L., Bowman, M. E., Dixon, R. A. & Noel, J. P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Horn, U. et al. High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46, 524–532 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, Y., Kim, C. Y., Mathews, I. I., Cane, D. E. & Khosla, C. The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl Acad. Sci. USA 103, 11124–11129 (2006)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  36. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  40. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.5.0.4. (2010)

Download references

Acknowledgements

We thank A. Perner for mass specrometry analyses, H. Heineke for NMR measurements, S. Schneider for preliminary studies on the PPTase, and U. Knüpfer for help in protein production. We thank the DFG for financial support (SFB 766) and the Swiss Light Source beamline X06DA for offering beamtime. D.H. is financially supported by a stipend of the Studienstiftung des Deutschen Volkes.

Author information

Authors and Affiliations

Authors

Contributions

T.B., G.Z. and C.H. designed experiments, T.B., R.W. and B.B. performed genetic and biochemical experiments and analysed data, D.H. and B.K. synthesized substrates and reference compounds, J.B.H., T.S. and G.Z. conducted protein crystallization, X-ray analyses and modelling, T.B., G.Z. and C.H. wrote the manuscript.

Corresponding authors

Correspondence to Georg Zocher or Christian Hertweck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results and Discussion, Supplementary Materials and Methods, Supplementary Figures 1-13, Supplementary Tables 1-2 and additional references. (PDF 1590 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretschneider, T., Heim, J., Heine, D. et al. Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 502, 124–128 (2013). https://doi.org/10.1038/nature12588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12588

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing