Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-resolution crystal structure of human protease-activated receptor 1

Abstract

Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2-Å-resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAR1 activation and overall structure of human PAR1 complex with antagonist vorapaxar.
Figure 2: Binding interactions of vorapaxar with human PAR1.
Figure 3: Structure motifs in PAR1 compared with other family A GPCRs.
Figure 4: Collapse of ligand-binding pocket in long-timescale molecular dynamics simulations of unliganded PAR1.
Figure 5: Residues important for agonist peptide binding and receptor activation.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for PAR1 are deposited in the Protein Data Bank under accession code 3VW7.

References

  1. Vu, T. K., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991)

    Article  CAS  Google Scholar 

  2. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000)

    Article  CAS  Google Scholar 

  3. Vu, T. K., Wheaton, V. I., Hung, D. T., Charo, I. & Coughlin, S. R. Domains specifying thrombin-receptor interaction. Nature 353, 674–677 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Chen, J., Ishii, M., Wang, L., Ishii, K. & Coughlin, S. R. Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041–16045 (1994)

    CAS  PubMed  Google Scholar 

  5. Liu, L. W., Vu, T. K., Esmon, C. T. & Coughlin, S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J. Biol. Chem. 266, 16977–16980 (1991)

    CAS  PubMed  Google Scholar 

  6. Ishii, K., Hein, L., Kobilka, B. & Coughlin, S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993)

    CAS  PubMed  Google Scholar 

  7. Mathews, I. I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 (1994)

    Article  CAS  Google Scholar 

  8. Gerszten, R. E. et al. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368, 648–651 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Coughlin, S. R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814 (2005)

    Article  CAS  Google Scholar 

  10. García-López, M. T., Gutierrez-Rodriguez, M. & Herranz, R. Thrombin-activated receptors: promising targets for cancer therapy? Curr. Med. Chem. 17, 109–128 (2010)

    Article  Google Scholar 

  11. Ramachandran, R., Noorbakhsh, F., Defea, K. & Hollenberg, M. D. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Rev. Drug Discov. 11, 69–86 (2012)

    Article  CAS  Google Scholar 

  12. Ishii, K. et al. Determinants of thrombin receptor cleavage. Receptor domains involved, specificity, and role of the P3 aspartate. J. Biol. Chem. 270, 16435–16440 (1995)

    Article  CAS  Google Scholar 

  13. Shapiro, M. J., Trejo, J., Zeng, D. & Coughlin, S. R. Role of the thrombin receptor’s cytoplasmic tail in intracellular trafficking. Distinct determinants for agonist-triggered versus tonic internalization and intracellular localization. J. Biol. Chem. 271, 32874–32880 (1996)

    Article  CAS  Google Scholar 

  14. Trejo, J. & Coughlin, S. R. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling. J. Biol. Chem. 274, 2216–2224 (1999)

    Article  CAS  Google Scholar 

  15. Trejo, J., Hammes, S. R. & Coughlin, S. R. Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc. Natl Acad. Sci. USA 95, 13698–13702 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Shapiro, M. J. & Coughlin, S. R. Separate signals for agonist-independent and agonist-triggered trafficking of protease-activated receptor 1. J. Biol. Chem. 273, 29009–29014 (1998)

    Article  CAS  Google Scholar 

  17. Hein, L., Ishii, K., Coughlin, S. R. & Kobilka, B. K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem. 269, 27719–27726 (1994)

    CAS  PubMed  Google Scholar 

  18. Chackalamannil, S. et al. Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. J. Med. Chem. 48, 5884–5887 (2005)

    Article  CAS  Google Scholar 

  19. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012)

    Article  CAS  Google Scholar 

  20. Kosoglou, T. et al. Pharmacodynamics and pharmacokinetics of the novel PAR-1 antagonist vorapaxar (formerly SCH 530348) in healthy subjects. Eur. J. Clin. Pharmacol. 68, 249–258 (2012)

    Article  CAS  Google Scholar 

  21. Soto, A. G. & Trejo, J. N-linked glycosylation of protease-activated receptor-1 second extracellular loop: a critical determinant for ligand-induced receptor activation and internalization. J. Biol. Chem. 285, 18781–18793 (2010)

    Article  CAS  Google Scholar 

  22. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Manglik, A. et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012)

    Article  ADS  CAS  Google Scholar 

  25. Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Smit, M. J. et al. Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu. Rev. Pharmacol. Toxicol. 47, 53–87 (2007)

    Article  CAS  Google Scholar 

  27. Schwartz, T. W., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Elling, C. E. Molecular mechanism of 7TM receptor activation—a global toggle switch model. Annu. Rev. Pharmacol. Toxicol. 46, 481–519 (2006)

    Article  CAS  Google Scholar 

  28. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003)

    Article  CAS  Google Scholar 

  29. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469, 236–240 (2011)

    Article  ADS  CAS  Google Scholar 

  31. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D 58, 872–874 (2002)

    Article  Google Scholar 

  33. Horstman, D. A. et al. An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 265, 21590–21595 (1990)

    CAS  PubMed  Google Scholar 

  34. Costa, T., Lang, J., Gless, C. & Herz, A. Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. Mol. Pharmacol. 37, 383–394 (1990)

    CAS  PubMed  Google Scholar 

  35. Gao, Z. G. & Ijzerman, A. P. Allosteric modulation of A2A adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000)

    Article  CAS  Google Scholar 

  36. Selent, J., Sanz, F., Pastor, M. & De Fabritiis, G. Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLOS Comput. Biol. 6, e1000884 (2010)

    Article  ADS  Google Scholar 

  37. Wilson, M. H., Highfield, H. A. & Limbird, L. E. The role of a conserved inter-transmembrane domain interface in regulating α2a-adrenergic receptor conformational stability and cell-surface turnover. Mol. Pharmacol. 59, 929–938 (2001)

    Article  CAS  Google Scholar 

  38. Neve, K. A. et al. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol. Pharmacol. 60, 373–381 (2001)

    Article  CAS  Google Scholar 

  39. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012)

    Article  ADS  CAS  Google Scholar 

  41. Lerner, D. J., Chen, M., Tram, T. & Coughlin, S. R. Agonist recognition by proteinase-activated receptor 2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J. Biol. Chem. 271, 13943–13947 (1996)

    Article  CAS  Google Scholar 

  42. Nanevicz, T. et al. Mechanisms of thrombin receptor agonist specificity. Chimeric receptors and complementary mutations identify an agonist recognition site. J. Biol. Chem. 270, 21619–21625 (1995)

    Article  CAS  Google Scholar 

  43. Blackhart, B. D. et al. Extracellular mutations of protease-activated receptor-1 result in differential activation by thrombin and thrombin receptor agonist peptide. Mol. Pharmacol. 58, 1178–1187 (2000)

    Article  CAS  Google Scholar 

  44. Seeley, S. et al. Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding. Chem. Biol. 10, 1033–1041 (2003)

    Article  CAS  Google Scholar 

  45. Bahou, W. F., Kutok, J. L., Wong, A., Potter, C. L. & Coller, B. S. Identification of a novel thrombin receptor sequence required for activation-dependent responses. Blood 84, 4195–4202 (1994)

    CAS  PubMed  Google Scholar 

  46. Nanevicz, T., Wang, L., Chen, M., Ishii, M. & Coughlin, S. R. Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling. J. Biol. Chem. 271, 702–706 (1996)

    Article  CAS  Google Scholar 

  47. Shaw, D. E. et al. Millisecond-scale molecular dynamics simulations on Anton. Proc. Conf. High Performance Computing Networking, Storage Analysis Article no. 39. (2009)

  48. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007)

    Article  ADS  CAS  Google Scholar 

  49. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    Article  CAS  Google Scholar 

  50. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009)

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  52. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004)

    Article  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  56. The. PyMOL Molecular Graphics System v.1.5.0.4 (Schrödinger, LLC, 2010)

  57. Cornelissen, I. et al. Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis. Proc. Natl Acad. Sci. USA 107, 18605–18610 (2010)

    Article  ADS  CAS  Google Scholar 

  58. Dror, R. O. et al. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl Acad. Sci. USA 106, 4689–4694 (2009)

    Article  ADS  CAS  Google Scholar 

  59. Fahmy, K. et al. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc. Natl Acad. Sci. USA 90, 10206–10210 (1993)

    Article  ADS  CAS  Google Scholar 

  60. Kräutler, V., Gunsteren, W. F. v. & Hünenberger, P. H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501–508 (2001)

    Article  Google Scholar 

  61. Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992)

    Article  ADS  CAS  Google Scholar 

  62. Shan, Y., Klepeis, J. L., Eastwood, M. P., Dror, R. O. & Shaw, D. E. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122, 54101 (2005)

    Article  ADS  Google Scholar 

  63. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011)

    Article  ADS  CAS  Google Scholar 

  64. Dror, R. O. et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl Acad. Sci. USA 108, 13118–13123 (2011)

    Article  ADS  CAS  Google Scholar 

  65. MacKerell, A. D., Jr, Bashford, D. & Bellott, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  66. Mackerell, A. D., Jr, Feig, M. & Brooks, C. L., III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004)

    Article  CAS  Google Scholar 

  67. Piana, S., Lindorff-Larsen, K. & Shaw, D. E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 100, L47–L49 (2011)

    Article  CAS  Google Scholar 

  68. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)

    Article  CAS  Google Scholar 

  69. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health, grants NS028471 (B.K.K.), and HL44907 and HL65590 (S.R.C.), and from the Mathers Foundation (B.K.K. and W.I.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. optimized the construct, expressed and purified human PAR1–T4L for crystallization, developed the purification procedure, performed crystallization trials, optimized crystallization conditions, collected diffraction data, and solved and refined the structure. Y.S. helped design and make constructs for baculoviral expression, and executed and analysed cell-based functional assays of wild-type and mutant PAR1. D.H.A. designed, performed and analysed molecular dynamics simulations. J.J.F. developed the initial expression and purification protocol for PAR1. D.P. helped design, execute and analyse platelet function studies. Y.Z. helped design and make constructs for baculoviral PAR expression. H.F.G. performed and analysed molecular dynamics simulations, and assisted with manuscript preparation. A.P. made vorapaxar. R.O.D. oversaw, designed and analysed molecular dynamics simulations, and assisted with manuscript preparation. D.E.S. oversaw molecular dynamics simulations and analysis. W.I.W. assisted with X-ray diffraction data processing and crystal structure refinement. S.R.C. and B.K.K. initiated the project, planned and analysed experiments, and supervised the research and wrote the manuscript with C.Z.

Corresponding authors

Correspondence to Shaun R. Coughlin or Brian K. Kobilka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11, Supplementary Tables 1-2 and additional references. (PDF 10020 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Srinivasan, Y., Arlow, D. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012). https://doi.org/10.1038/nature11701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11701

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research